MLxPlore
Version 1.1.0
January 2014

A software for model exploration and visualization
1 Introduction

2 Installing MLXPLORE

3 Running MLXPLORE

4 Models
5 Administration and treatment design

5.1 Single administration
5.1.1 Working material
5.1.2 Design study

5.2 Dose every 12 hours
5.2.1 Working material
5.2.2 Design study

5.3 Different doses at different times
5.3.1 Working material
5.3.2 Design study

5.4 Comparison of 2 dosing regimens
5.4.1 Working material
5.4.2 Design study

5.5 Definition of a treatment as the combination of oral and IV administrations
5.5.1 Working material
5.5.2 Design study

5.6 Comparison of 2 treatments defined as different combinations of oral and IV administrations
5.6.1 Working material
5.6.2 Design study

6 Output

6.1 Simple model for single output and different time grids
6.1.1 Working material
6.1.2 Output description

6.2 Definition of x-label and y-label
6.2.1 Working material
6.2.2 Output description

Page 35

6.3 A simple model for two outputs

6.3.1 Working material

6.3.2 Output description

Page 37

7 Settings

7.1 Working material

7.2 Keywords

Page 44

8 MlxPlore keywords

8.1 MODEL

8.2 PARAMETER

8.3 OUTPUT

8.4 DESIGN

8.4.1 ADMINISTRATION

8.4.2 TREATMENT

8.5 SETTINGS

8.5.1 GRAPHICS

Page 47
1 Introduction

MLXPLORE is a graphical and interactive software for the exploration and visualization of complex pharmacometric models. MLXPLORE also includes the ability to study the statistical variability of the models, and to model and study complex administrations designs. MLXPLORE is based on the MLXTRAN model description language popularized by the Monolix software, therefore benefiting from the remarkable flexibility and power of MLXTRAN to easily encode complex pharmacometric, PKPD and statistical models. MLXTRAN for MLXPLORE is described in a separate document (file 'MLxtranModel_forMLxplore.pdf').

MLXPLORE does not require Monolix, although they make for a powerful combination, enabling to use the same, human-readable model description, to finely explore the properties of the model on the one hand, and on the other hand use the same model for advanced parameter estimation in the context of population analysis and mixed effect statistics.

The examples studied in this guide are located into the directory

<user home path>/lixoft/mlxplore/mlxplore100/demos/examples
2 Installing MLXPLORE

2.1 Downloading packages

The MLXPLORE packages can be downloaded through the download manager hosted at http://download.lixoft.com. The download manager is available for users provided with an access key. Different MLXPLORE packages are available, depending on the version of the operating system. MLXPLORE currently supports Windows XP/Vista/Seven/8, Linux (all common distributions) 32/64 bits.

Choice of MLXPLORE versions

- Linux (32 bits)
- Linux (64 bits)
- Windows

2.2 Prerequisites - Linux specifics

- install sharutils: uudecode is required to uncompress the MLXPLORE package;
- make sure you have gcc/g++/make installed or install them.

2.3 About Installer

- Linux: the installer is a self-extractable archive.
 - run the following command (depending on your os version):
 - `#/ sh MlxPlore-1.1.0-linux32.bin`
 - `#/ sh MlxPlore-1.1.0-linux64.bin`
 - you can specify the target installation directory by giving the path as argument
 - a directory containing MLXPLORE will be created in the directory installation path
- Windows
 - copy the installer on your Desktop or in your windows temporary directory
 - Double click on the executable and follow the instructions.
2.4 Directory structure

The MlxPlore directory structure is divided into two parts:

- the software directory containing the MlxPlore program,
- the personal user directory containing the MlxPlore workspace and documentation

2.4.1 Installation directory

```
MlxPlore.................................MlxPlore root directory
  mlxplore110..............................MlxPlore version directory
    bin ...........................................Tools directory
    config .....................................Configuration files
    factory .....................................Mlxtran C++ API
    lib ..........................................C++ library
    tools .......................................External tool used by MlxPlore
```

2.4.2 User directory

The user directory is created after the first launch of MlxPlore. This directory contains the basic configuration of MlxPlore, documentation, demos, log files, license file, ...

```
lixoft.......................................Lixoft data root directory
  mlxplore.................................MlxPlore directory
    mlxplore110..............................MlxPlore version directory
      doc ........................................MlxPlore documentation
      log ........................................Log files
      tmp ........................................Temporary directory
      license ..................................License directory
      config ...................................Configuration files
```

2.5 License

The activation key (provided by Lixoft) must be entered in the dialog box titled ‘Lixoft license activation’ (‘With activation key’ tab). This dialog box only appears when no license is available on the user’s computer or when the license expires.
3 Running MlxPlore

3.1 Linux

To run MlxPlore under the Linux operating system, open a file browser, then browse the MlxPlore install folder and go to the bin directory. Click on the mlxPloreRun.sh executable file.

3.2 Windows

Under Windows operating system, go to the Start menu, go to the Mlxplore folder, then click on the MlxPlore icon.

4 Models

Models are written in the MLXTRAN language. MLXTRAN is a declarative, human-readable language describing simple and complex structural models as well as hierarchical statistical models. It supports explicit definition-based descriptions, as well as flexible equation-based descriptions. The following sections go through a series of examples to illustrate how to use a model description and explore the model.

4.1 Exploration of the structural model $f = a + bt + ct^2$

```
modellb_mlxplore.txt: f = a + bt + ct^2
```
4.1.1 Working material

- **model1a_mlxplore.txt**: the structural model is implemented using Mlxtran in the file model1_mlxtran.txt.

  ```
  <MODEL>
  file='model1_mlxtran.txt'
  ;-------------------------------
  <PARAMETER>
  a=10
  b=-2
  c=0.02
  ;-------------------------------
  <OUTPUT>
  list=f
  grid=1:1:100
  ```

- **model1b_mlxplore.txt**: the same structural model is embedded in the MlxPlore script.

  ```
  [LONGITUDINAL]
  input={a,b,c}
  
  EQUATION:
  f=a+b*t+c*t^2
  ```
4.1.2 Model study

The parameters \(a, b, c \) of the model \(f = a + bt + ct^2 \) are modified through the corresponding sliders. The effect of a value change is immediately visible on the plot. The bounds of a slider can be modified with button \(\mathbb{Q} \).

Button \textit{Reinit. Param} resets the parameters \(a, b, c \) to the initial values define in section \texttt{<PARAMETER>}. Button \textit{Animation} animates the curve by changing the variable \(t \) of the studied model \((f = a + bt + ct^2)\).

MLXPLORE allows to set a \textit{reference} curve by clicking on button \textit{Reference}.
4.2 Exploration of the structural model \(f = a + bt + ct^2 \) where \(b \) is normally distributed and \(c \) is log-normally distributed.
4.2.1 Working material

- model2a_mlxplore.txt: the model is implemented using MLXTRAN in the file model2_mlxtran.txt.

```xml
<MODEL>
file='model2_mlxtran.txt'

;-------------------------------
<PARAMETER>
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.1

;-------------------------------
<OUTPUT>
list=f
grid=1:1:100

model2_mlxtran

[LONGITUDINAL]
input={a,b,c}

EQUATION:
f=a+b*t+c*t^2

;-----------------------------------
[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c}

DEFINITION:
b = {distribution=normal, mean=b_pop, sd=omega_b}
c = {distribution=lognormal, typical=c_pop, sd=omega_c}
```

- model2b_mlxplore.txt: the same model is embedded in the MlxPlore script.
4.2.2 Model study

In this example, section [INDIVIDUAL] defines parameters \(b \) and \(c \) as respectively normally distributed and log-normally distributed.

Therefore \(b \sim N(b_{\text{pop}}, \omega_b^2) \) and \(\log(c) \sim N(c_{\text{pop}}, \omega_c^2) \), the parameters \(b_{\text{pop}}, \omega_b, c_{\text{pop}} \) and \(\omega_c \) are the inputs parameters for the section [INDIVIDUAL].

\(a \) is the input parameter for the section [LONGITUDINAL] which can be modified through the interface. The other parameters (\(b \) and \(c \)) are computed using the definition of section [INDIVIDUAL].

On the MLXPLvRE interface, a new tab \texttt{individual} appears above the \texttt{prediction} tab. The actions on the sliders corresponding to the inputs parameters of the section [INDIVIDUAL] change the curve.

The checkbox \textit{Random effect} allows to display the percentiles corresponding to the section [INDIVIDUAL].
4.3 Exploration of the structural model $f = a + bt + ct^2$ where c is function of a covariate w which is normally distributed

4.3.1 Working material

- model3a_mlxplore.txt: the model is implemented using Mlxtran in file model3_mlxtran.txt.
- model3b_mlxplore.txt: $f = a + bt + ct^2$, where c is function of a covariate w which is normally distributed
model3_mlxtran

[LONGITUDINAL]
input={a,b,c}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c, w, w_pop, beta}

EQUATION:
c_pred = c_pop*exp(beta*(w-w_pop))

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={w_pop, omega_w}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

- model3b_mlxplore.txt: the same joint model is embedded in the MlxPlore script.
4.3.2 Model study

In this example, section [COVARIATE] defines parameter w as normally distributed. Therefore $w \sim N(w_{\text{pop}}, \omega{\omega}_w^2)$ and the parameters w_{pop}, ω_w, are the inputs parameters of section [COVARIATE]. $b_{\text{pop}}, \omega_b, c_{\text{pop}}, \omega_c, w, w_{\text{pop}}$ and β are the inputs parameters of section [INDIVIDUAL]. Here w is computed using the definition of section [COVARIATE].
The other parameters $b_{\text{pop}}, \omega_{b}, c_{\text{pop}}, \omega_{c}, w_{\text{pop}}$ are set (and can be modified) through the interface. a is the input parameter of section [LONGITUDINAL] and can be modified through the interface. The other parameters (b and c) are computed using the definition in section [INDIVIDUAL].

On the MLXPLORE interface, a new tab covariate appears. The actions on the sliders corresponding to the inputs parameters of the section [COVARIATE] are visible on the plot.

The checkbox Random effect and the checkbox Covariate allow to display the percentiles.

5 Administration and treatment design

MLXPLORE allows to specify and try different dose regimens. The description of the administration design is written in section <DESIGN>. This section runs through a series of illustrative design and design comparison examples.

5.1 Single administration

![Image of MLXPLORE interface]

design1a_mlxplore.txt: Single administration

5.1.1 Working material

- design1a_mlxplore.txt: single administration.
<MODEL>
[LONGITUDINAL]
input={ka, V, Cl}

PK:
depot (type=1, target=Ad)
depot (type=2, target=Ac)

EQUATION:
ddt_Ad = -ka*Ad
ddt_Ac = ka*Ad - Cl/V*Ac
Cc = Ac/V

;--

<DESIGN>
[ADMINISTRATION]
admi={time=1, amount=1, type=1}

<PARAMETER>
ka=1
V=10
Cl=1

<OUTPUT>
list={
Cc = {xlabel=time (h), ylabel=concentration}}
grid=0:0.5:40

- designlb_mlxplore.txt: same model and same design. The target compartment is defined in the MlxPloRE script using the reserved keyword target.
5.1.2 Design study

The section [ADMINISTRATION] describes a single administration:

Design administration

At time = 1 the target Ad receives a dose of amount = 1.
5.2 Dose every 12 hours

5.2.1 Working material

design2_mlxplore.txt: Dose every 12 hours
5.2.2 Design study

The section [ADMINISTRATION] contains the description of a dose administration every 12 hours:

Design administration
At times (1, 13, 25, ...133) (times are processed using the loop syntax `<starttime>;<step>;<endtime>`) the target Ad receives a dose of $amount = 1$.

Model: depot for administration
where $target = Ad$
5.3 Different doses at different times

![Image of MLXplore interface]

design3_mlxplore.txt: Different doses at different times

5.3.1 Working material

design3_mlxplore.txt: different doses at different times
5.3.2 Design study

The section [ADMINISTRATION] contains the description of an administration with different doses at different times:
Design administration
For times (1, 13, 37, 50, 56, 80) the target Ad receives a dose of respectively (1, 0.5, 1, 0.5, 1.5, 1).

5.4 Comparison of 2 dosing regimens

design4_mlxplore.txt: Comparison of 2 dosing regimens

5.4.1 Working material

design4_mlxplore.txt: comparison of 2 dosing regimens (oral administration).
5.4.2 Design study

The section [ADMINISTRATION] contains the description of an administration with different doses at different times:

Design administration

The administration design allows to represent the dosing regimens adm1 and adm2. The curves

EQUATION:
\[
\begin{align*}
\frac{d}{dt} Ad &= -ka \cdot Ad \\
\frac{d}{dt} Ac &= ka \cdot Ad - Cl/V \cdot Ac \\
Cc &= Ac/V
\end{align*}
\]

Model: depot for administration where \(target = Ad \)
adm\textsubscript{1} and adm\textsubscript{2} are displayed on the same graphic that allows to compare both types of administrations.

5.5 Definition of a treatment as the combination of oral and IV administrations

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Graphical representation of adm\textsubscript{1} and adm\textsubscript{2}}
\end{figure}

\texttt{design5_mlxplore.txt}: Definition of a treatment as the combination of oral and IV administrations

5.5.1 Working material

\texttt{design5_mlxplore.txt}: definition of a treatment as the combination of oral and IV administrations.
5.5.2 Design study

The section [ADMINISTRATION] contains the description of an administration with different doses at different times. The section [TREATMENT] contains the description of the combination of oral and IV administrations:
Design administration
This example introduces a new section TREATMENT on which the administrations adm1 and adm2 are combined. Therefore the plot associated to treatment trt1 integrates the informations of dose regimens adm1 and adm2.

5.6 Comparison of 2 treatments defined as different combinations of oral and IV administrations

design6a_mlxplore.txt: Comparison of 2 treatments defined as different combinations of oral and IV administrations
5.6.1 Working material

- design6a_mlxplore.txt: comparison of 2 treatments defined as different combinations of oral and IV administrations, using the reserved keyword type. Here, type=1 for oral and type=2 for IV.

```
<MODEL>
[LONGITUDINAL]
input={ka,V,Cl}

PK:
depot(type=1,target=Ad)
depot(type=2,target=Ac)

EQUATION:
ddt_Ad = -ka*Ad
ddt_Ac = ka*Ad - Cl/V*Ac
Cc = Ac/V

;------------------------------------------

<DESIGN>
[ADMINISTRATION]
adm1={time=1:24:144, amount=1, type=1}
adm2={time=7:24:144, amount=0.5, type=2}
adm3={time=1:12:144, amount=0.5, type=1}

[TREATMENT]
trt1={adm1, adm2}
trt2={adm3, adm2}

<PARAMETER>
ka=1
V=10
Cl=1

<OUTPUT>
grid=0:0.5:200
list=
Cc = (xlabel=time (h), ylabel=concentration)}
```

- design6b_mlxplore.txt: same model and same design, using the reserved keyword target. Here, target=Ad for oral and target=Ac for IV.

```
5.6.2 Design study

The section [ADMINISTRATION] contains the description of an administration with different doses at different times. The section [TREATMENT] contains the description of the combination of oral and IV administrations:
Design administration
The example proposes to define two treatments as combinations of administrations. The treatment `trt1` combines administrations `adm1` and `adm2`, the treatment `trt2` combines the administrations `adm3` and `adm2`.

6 Output
The `<OUTPUT>` section describes the response of a structural model.
6.1 Simple model for single output and different time grids

output1a_mlxplore.txt: A simple model for a single output and a regular time grid

6.1.1 Working material

- output1a_mlxplore.txt: a simple model for a single output and a regular time grid.

```xml
<MODEL>
 [LONGITUDINAL]
 input={a,k}

 EQUATION:
 f=a*exp(-k*t)

<PARAMETER>
 a=10
 k=1

<OUTPUT>
 list={f}
 grid=0:1:8
```

- output1b_mlxplore.txt: same model, regular time grid with another time step.
6.1.2 Output description

The section OUTPUT contains the names of output values (as provided by the model section LONGITUDINAL).

• output1c_mlxplore.txt: same model, irregular time grid.
\[ f \text{ is the output to plot} \]

This example illustrates the computation of function \( f(a, k, t) \) (list={f}). \( a \) and \( k \) are defined through the interface. \( t \) has its values on grid \([0, 8]\) with step 1 (grid=0:1:8).

### 6.2 Definition of x-label and y-label

output2_mlxplore.txt: Definition of x-label and y-label

### 6.2.1 Working material

output2_mlxplore.txt: definition of x-label and y-label.
6.2.2 Output description

Labels of plot axes are changed using keywords xlabel and ylabel:

\[
\text{xlabel='time (h)'}, \quad \text{ylabel='concentration (mg/l)'}
\]

\[f(a, k) = a \cdot \exp(-k \cdot t)\]

\[f\] is the output to plot. The label of \(x\)-axis is \(\text{time (h)}\), the label of \(y\)-axis is \(\text{concentration (mg/l)}\).
6.3 A simple model for two outputs

output3b_mlxplore.txt: a simple model for two outputs (the second output is displayed as a function of the first output)

6.3.1 Working material

- output3a_mlxplore.txt: simple model for two outputs.

```xml
<MODEL>
 [LONGITUDINAL]
 input={a,k,b}

 EQUATION:
 f=a*exp(-k*t)
 g=f/(f+b)

;-------------------------------
<PARAMETER>
 a=10
 k=0.1
 b=1

;-------------------------------
<OUTPUT>
 list={f,g}
 grid=1:1:60
```
• output3b_mlxplore.txt: same model and same two outputs, the second output is displayed as a function of first output instead of a function of time.

```
<MODEL>
[LONGITUDINAL]
input=(a,k,b)

EQUATION:
f=a*exp(-k*t)
g=f/(f+b)

;-------------------------------
<PARAMETER>
a=10
k=0.1
b=1

;-------------------------------
<OUTPUT>
list={f, g={xvar=f}}
grid=1:1:60
```

6.3.2 Output description

When several outputs are defined, it is possible to plot a given output as a function of another output with keyword xvar.

```
[...]
EQUATION:
f=a*exp(-k*t)
g=f/(f+b)
[...]
<OUTPUT>
list={f, g={xvar=f}}
grid=1:1:60
[...]
```

*f* and *g* are the outputs to plot. *g* is displayed as a function of *f* (*xvar=f*).

7 Settings

The section SETTINGS allows to configure the interface through a project.
7.1 Working material

- **setting1_mlxplore.txt**: the number of simulations used for computing the prediction intervals is set in the section `<SETTINGS>`.
<MODEL>
[LONGITUDINAL]
input={a,b,c}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c, w, w_pop, beta}

EQUATION:
c_pred = c_pop*exp(beta*(w-w_pop))

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={w_pop, omega_w}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

<PARAMETER>
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.1
w_pop=70
omega_w=10
beta=0.02

<OUTPUT>
list=f
grid=1:1:100

<SETTINGS>
[GRAPHICS]
nb_simulations=1000

• setting2a_mlxplore.txt and setting2b_mlxplore.txt: the components of the IIV to display when the project is run are defined in the section <SETTINGS> settings2a_mlxplore
<MODEL>
[LONGITUDINAL]
input={a,b,c}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c, w, w_pop, beta}

EQUATION:
c_pred = c_pop*exp(beta*(w-w_pop))

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={w_pop, omega_w}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

<PARAMETER>
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.01
w_pop=70
omega_w=10
beta=0.02

<OUTPUT>
list=f
grid=1:1:100

<SETTINGS>
[GRAPHICS]
bv_simulations=1000
iiv_parameter=true
iiv_covariate=false

settings2b_mlxplore
<MODEL>
[LONGITUDINAL]
input={a,b,c}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c, w, w_pop, beta}

EQUATION:
c_pred = c_pop*exp(beta*(w-w_pop))

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={w_pop, omega_w}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

<PARAMETER>
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.1
w_pop=70
omega_w=10
beta=0.02

<OUTPUT>
list=f
grid=1:1:100

<SETTINGS>
[GRAPHICS]
nb_simulations=1000
iiv_parameter=false
iiv_covariate=true

• setting3a_mlxplore.txt and setting3b_mlxplore.txt: the number of prediction intervals and their levels are defined in the section <SETTINGS>.
settings3a_mlxplore
```xml
<MODEL>
[LONGITUDINAL]
input={(a,b,c)}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={(b_pop, omega_b, c_pop, omega_c, w, w_pop, beta)}

EQUATION:
c_pred = c_pop*exp(beta*(w-w_pop))

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={(w_pop, omega_w)}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

<PARAMETER>
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.01
w_pop=70
omega_w=10
beta=0.02

<OUTPUT>
list=f
grid=1:1:100

<SETTINGS>
[GRAPHICS]
nb_simulations=1000
iiv_parameter=true
iiv_covariate=true
nb_band=4
pred_interval=80

settings3b_mlxplore
```
MODEL

[LONGITUDINAL]
input={(a, b, c)}

EQUATION:
f=a+b*t+c*t^2

[INDIVIDUAL]
input={b_pop, omega_b, c_pop, omega_c, w, w_pop, beta}

EQUATION:
c_pred=c_pop*exp(betaw, w-w_pop)

DEFINITION:
b = {distribution=normal, prediction=b_pop, sd=omega_b}
c = {distribution=lognormal, prediction=c_pred, sd=omega_c}

[COVARIATE]
input={w_pop, omega_w}

DEFINITION:
w = {distribution=normal, typical=w_pop, sd=omega_w}

PARAMETER
a=10
b_pop=-2
omega_b=0.2
c_pop=0.02
omega_c=0.1
w_pop=70
omega_w=10
beta=0.02

OUTPUT
list=f
grid=1:1:100

SETTINGS

GRAPHICS
nb_simulations=1000
iiv_parameter=true
iiv_covariate=true
nb_band=100
pred_interval=80
7.2 Keywords

- `nb_simulations`: number of simulations used to compute percentiles
- `iiv_parameter`: variability on individual parameters (checkbox Random effect is ticked when `iiv_parameter=true`.
- `iiv_covariate`: variability on covariate parameters (checkbox Covariate is ticked when `iiv_covariate=true`.
- `nb_band`: number of bands used to display the percentiles
- `pred_interval`: prediction interval

8 MLXPLORE keywords

8.1 MODEL

The section `<MODEL>` specifies the MLXTRAN model. There are two ways to define a model:

- using an external model file `file=<path to model file>`:
  
  Example:

  ```mlxtran
 <MODEL>
 file='model1_mlxtran.txt'
  ```

- with an embedded MLXTRAN model:
  
  Example:

  ```mlxtran
 <MODEL>
 [LONGITUDINAL]
 input={a,b,c}
 EQUATION:
 f=a+b*t+c*t^2
  ```

8.2 PARAMETER

The section `PARAMETER` gives the initial values of input parameters with the following syntax: `<parameter> = <value>`.

Example:
The parameters \( a, b, c \) are defined as inputs of the model embedded in section <MODEL>.

### 8.3 OUTPUT

The OUTPUT section defines the outputs to plot.

**Syntax of OUTPUT section**:

\[
\text{list} = \{ \\
<\text{output1}> \\
[=\{ \\
\text{xlabel}='<\text{x-label name}>', \\
\text{ylabel}='<\text{y-label name}>', \\
\text{xvar}=<\text{another output}> \\
\}]\\n<\text{output2}>, \\
\ldots \\
<\text{outputn}> \\
\}
\]

The part within ‘||’ is optional.

\[
\text{grid}=<\text{start time}>:<\text{step}>:<\text{end time}> | \{t0, t1, \ldots, tn\} \\
\text{xlabel}=<\text{global x-label name}> \\
\text{ylabel}=<\text{global y-label name}>
\]

Note that the keywords **list** and **grid** are mandatories.

- **Keyword 'list'**:
  
The list of outputs is defined using the keyword **list**.

  Each output can be enriched with the name of \( x \)-axis and \( y \)-axis by using the following syntax:

  \[
  \text{list}=\{f=\{\text{xlabel}='<\text{label of x axis}'>, \text{ylabel}='<\text{label of y axis}'>\}\}
  \]

  A given output can be represented according another output by using the keyword **xvar**
- **Keyword 'grid':**
  The time grid is defined with the keyword **grid** by using the following syntax:
  - grid=start time:step:end time
  - or grid={t_0, t_1, ... t_n}

- **Keyword 'xlabel':**
  If the label of x-axis is the same on each output, the keyword **xlabel**=<label of x axis> sets all the labels of x axis with this same name.
  **Example:**

    ```python
 list={
 f={xlabel='label of x axis', ylabel='label of y axis'},
 g={ylabel='label of y axis', xvar=f}
 }
 list={
 f,
 g
 }
    ```

- **Keyword 'ylabel':** this keyword has the same behaviour than xlabel but it is applied on y-axis.

### 8.4 DESIGN

#### 8.4.1 ADMINISTRATION

<administration name> = {
    type=<integer>,
    time=<value> | <start time>:<step>:<end time> | time={t_0, t_1, ..., t_n}
    amount = <value> | time={t_0, t_1, ..., t_n}
    target=<component target>,
    rate=<dose rate>
}

- **Keyword 'type':** dose compartment id
- **Keyword 'target':** target component
- **Keyword 'time':** time of the dose administration
• Keyword ‘amount’: amount of dose
• Keyword ‘rate’: dose rate

8.4.2 TREATMENT

A treatment combines a set of administrations by using the following syntax:

```xml
<treatment name = {
 <administration name 1>,
 <administration name 2> ,
 ...
}
```

Example:

```xml
[...]
<DESIGN>
[ADMINISTRATION]
adm1={
 time=1:12:144,
 amount=1,
 target=Ad
}
adm2={
 time=1:24:144,
 amount=2,
 target=Ac
}
[TREATMENT]
trt1={adm1, adm2}
[...]
```

Design administration

8.5 SETTINGS

8.5.1 GRAPHICS

• nb_simulations: number of simulations used to compute percentiles
• iiv_parameter: variability on individual parameters (checkbox Random effect is ticked when iiv_parameter=true).
• iiv_covariate: variability on covariate parameters (checkbox Covariate is ticked when iiv_covariate=true).
• nb_band: number of bands used to display the percentiles
• pred_interval: prediction interval