
Monolix

Methodology

Version 4.3.3

September 2014

A software for the analysis of nonlinear mixed e�ects models

Maximum likelihood estimation

Model selection

Hypothesis testing

Graphical analysis

Data simulation

. . .

S

T M H

I M P O R T A N C E S A M P L I N G

C M M

H C

A S

S A

S I M U L A T E D A N N E A L I N G

I M

C

M E T R O P O L I S

M



Contents

1 Introduction 4

1.1 Estimation of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 The SAEM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 The MCMC-SAEM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 The Simulated Annealing SAEM algorithm . . . . . . . . . . . . . . . . . 8

1.2 Some extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Model with censored data . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Estimation with a prior distribution . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Modeling the inter-occasion variability . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Mixture models and mixture of models . . . . . . . . . . . . . . . . . . . . 12

1.3 Estimation of the Fisher Information matrix . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Linearization of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 A stochastic approximation of the Fisher Information Matrix . . . . . . . 14

1.4 Estimation of the individual parameters . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Estimation of the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Linearization of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2 Estimation using importance sampling . . . . . . . . . . . . . . . . . . . . 17

1.6 Estimation of the weighted residuals . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 The Population Weighted Residuals . . . . . . . . . . . . . . . . . . . . . 18

2



CONTENTS

1.6.2 The Individual Weighted Residuals . . . . . . . . . . . . . . . . . . . . . . 18

1.6.3 The Normalized Prediction Distribution . . . . . . . . . . . . . . . . . . . 18

1.7 Inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.1 The inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.2 The outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Statistical models 22

2.1 The nonlinear mixed e�ects model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Individual parameters model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Examples of transformations . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Example of continuous covariate model . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Example of categorical covariate model . . . . . . . . . . . . . . . . . . . . 24

2.3 The residual error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Multi-responses model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Model with censored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 BLQ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Interval censored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Inter-occasion variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Discrete data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Mixture models and model mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.2 Model mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Prior models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Monolix 4.3.3



Chapter 1

Introduction

1.1 Estimation of the parameters

1.1.1 The SAEM algorithm

We are in a classical framework of incomplete data: the observed data is y = (yij ; 1 ≤ i ≤
N , 1 ≤ j ≤ ni), whereas the random parameters (ψ = ψi ; 1 ≤ i ≤ N) are the non observed
data. Then, the complete data of the model is (y, ψ). Our purpose is to compute the maximum
likelihood estimator of the unknown set of parameters θ = (µ,Ω, a, b, c), by maximizing the
likelihood of the observations `(y; θ).

In the case of a linear model, the estimation of the unknown parameters can be treated
with the usual EM algorithm. At iteration k of EM, the E-step consists in computing the
conditional expectation of the complete log-likelihood Qk(θ) = E (log p(y, ψ; θ)|y, θk−1) and the
M-step consists in computing the value θk that maximizes Qk(θ).

Following [4, 10], the EM sequence (θk) converges to a stationary point of the observed
likelihood (i.e a point where the derivative of ` is 0) under general regularity conditions. In
cases where the regression function f does not linearly depend on the random e�ects, the E-step
cannot be performed in a closed-form.

The stochastic approximation version of the standard EM algorithm, proposed by [3] consists
in replacing the usual E-step of EM by a stochastic procedure. At iteration k of SAEM:

• Simulation-step : draw ψ(k) from the conditional distribution p(·|y; θk).

• Stochastic approximation : update Qk(θ) according to

Qk(θ) = Qk−1(θ) + γk(log p(y, ψ(k); θ)−Qk−1(θ)) (1.1)

4



1.1. ESTIMATION OF THE PARAMETERS

where (γk) is a decreasing sequence of positive numbers with γ1 = 1.

• Maximization-step : update θk according to

θk+1 = Arg max
θ
Qk(θ).

It is shown in [3] that SAEM converges to a maximum (local or global) of the likelihood of
the observations under very general conditions.

Here, the complete log-likelihood can be written

log p(y, ψ; θ) = log p(y, h(ϕ); θ)

= −
∑
i,j

log(g(xij , ψi, ξ))−
1

2

∑
i,j

(
yij − f(xij , ψi)

g(xij , ψi, ξ)

)2

−N
2

log(|Ω|)− 1

2

N∑
i=1

(ϕi − Ciµ)′Ω−1(ϕi − Ciµ)− Ntot +Nd

2
log(2π)

where Ntot =
∑N

i=1 ni is the total number of observations.

First, consider a constant residual error model (g = a). The set of parameters to estimate is
θ = (µ,Ω, a). Then, the complete model belongs to the exponential family and the approximation
step reduces to only updating the su�cient statistics of the complete model:

s1,i,k = s1,i,k−1 + γk (ϕi,k − s1,i,k−1) , i = 1, . . . , N

s2,k = s2,k−1 + γk

(
N∑
i=1

ϕi,k ϕ
′
i,k − s2,k−1

)

s3,k = s3,k−1 + γk

∑
i,j

(
yij − f(xij , ψ

(k)
i )
)2
− s3,k−1

 .

Then, θk+1 is obtained in the maximization step as follows:

µk+1 =

(
N∑
i=1

Ci
′Ωk
−1Ci

)−1 N∑
i=1

Ci
′Ωk
−1s1,i,k (1.2)

Ωk+1 =
1

N

(
s2,k −

N∑
i=1

(Ciµk+1)s
′
1,i,k −

N∑
i=1

s1,i,k(Ciµk+1)
′ +

N∑
i=1

(Ciµk+1)(Ciµk+1)
′

)
(1.3)

ak+1 =

√
s3,k
Ntot

(1.4)

Remark 1: The sequence of step sizes used in Monolix decreases as k−a. More precisely, for
any sequence of integers K1,K2, . . . ,KJ and any sequence a1, a2, . . . , aJ of real numbers such

5 Monolix 4.3.3



1.1. ESTIMATION OF THE PARAMETERS

that 0 ≤ a1 < a2 < . . . < aJ ≤ 1, we de�ne the sequence of step sizes (γk) as follows:

γk =
1

ka1
for any 1 ≤ k ≤ K1 (1.5)

and for 2 ≤ j ≤ J ,

γk =
1(

k −Kj−1 + γ
−1/aj
Kj−1

)aj for any

j−1∑
i=1

Ki + 1 ≤ k ≤
j∑
i=1

Ki (1.6)

Here, K =
∑J

j=1Kj is the total number of iterations.

We recommend to use a1 = 0 (that is γk = 1) during the �rst iterations, and aJ = 1 during
the last iterations. Indeed, the initial guess θ0 may be far from the maximum likelihood value we
are looking for and the �rst iterations with γk = 1 allow to converge quickly to a neighborhood of
the maximum likelihood estimator. Then, smaller step sizes ensure the almost sure convergence
of the algorithm to the maximum likelihood estimator.

In the case where J = 2 with a1 = 0 and a2 = 1, the sequence of step sizes is

γk = 1 for 1 ≤ k ≤ K1

=
1

k −K1 + 1
for K1 + 1 ≤ k ≤ K1 +K2

Remark 2: The estimated covariance matrix Ωk+1 de�ned in (1.3) is a full covariance matrix.
However, the covariance matrix Ω of the random e�ects can have any covariance structure. If
we assume, for example, that there is no correlation between the random e�ects, we will set to
0 the non diagonal elements of Ωk+1 de�ned in (1.3).

We can also assume that a random e�ect has no variance. If the `th random e�ect has a
variance equal to 0, then the `th individual parameter is no longer random and the simulation
step of SAEM needs some modi�cation. During the �rst K0 iterations, we use SAEM as it
was described above, considering that all the e�ects are random and assuming that there is no
correlation between the `th random e�ect and the other ones (ω2

``′ = 0 for any ` 6= `′). Then,
during the next iterations, we use again SAEM, but the variance of this random e�ect is no
longer estimated: it is forced to decrease at each iteration by setting

ω2
``,k+1 = α ω2

``,k , K0 ≤ k ≤ K (1.7)

where α is chosen between 0 and 1 such that ω2
``,K = 10−6ω2

``,K0
.

Remark 3: - For a residual variance model of the form g = b f c, where c is �xed, the complete
model also belongs to the exponential family and the estimation of b is straightforward: the
su�cient statistics sequence (s3,k) is de�ned by

s3,k = s3,k−1 + γk

∑
i,j

(
yij − f(xij , ψ

(k)
i )

f c(xij , ψ
(k)
i )

)2

− s3,k−1


6 Monolix 4.3.3



1.1. ESTIMATION OF THE PARAMETERS

and bk+1 =
√
s3,k/Ntot.

- For a general residual variance model g = a+ b f c, the complete model does not belong to
the exponential family and the estimates of the residual variance parameters (a, b, c) cannot be
expressed as a function of some su�cient statistics. Then, let (Ak, Bk, Ck) that minimize the
complete log-likelihood:

(Ak, Bk, Ck) = Arg min
(a,b,c)

∑
i,j

log(a+ bf c(xij , ψ
(k)
i )) +

1

2

∑
i,j

(
yij − f(xij , ψ

(k)
i )

a+ bf c(xij , ψ
(k)
i )

)2


We update the residual variance parameters as follows:

ak+1 = ak + γk (Ak − ak) (1.8)

bk+1 = bk + γk (Bk − bk) (1.9)

ck+1 = ck + γk (Ck − ck) (1.10)

The estimation of µ and Ω remains unchanged.

1.1.2 The MCMC-SAEM algorithm

For model (1.1), the simulation step cannot be directly performed. Kuhn and Lavielle [5]
propose to combine the SAEM algorithm with a MCMC (Markov Chain Monte Carlo) procedure.
This procedure consists in replacing the Simulation-step at iteration k by m iterations of the
Hastings-Metropolis algorithm.

Here, we will consider the Gaussian parameters (ϕi). For i = 1, 2, . . . , N

• let ϕi,0 = ϕ
(k−1)
i

• for p = 1, 2, . . . ,m,

1. draw ϕ̃i,p using the proposal kernel qθk(ϕi,p−1, ·)
2. set ϕi,p = ϕ̃i,p with probability

α(ϕi,p−1, ϕ̃i,p) = min

(
1,

p(ϕ̃i,p|yi; θk)qθk(ϕ̃i,p, ϕi,p−1)

p(ϕi,p−1|yi; θk)qθk(ϕi,p−1, ϕ̃i,p)

)
and ϕi,p = ϕi,p−1 with probability 1− α(ϕi,p−1, ϕ̃i,p).

• let ϕ
(k)
i = ϕi,m.

Several transition kernels, associated to di�erent proposals can be successively used. We use
the four following proposal kernels:

7 Monolix 4.3.3



1.1. ESTIMATION OF THE PARAMETERS

1. q
(1)
θk

is the prior distribution of ϕi at iteration k, that is the Gaussian distribution
N (Ciµk,Ωk) and then

α(ϕi,p−1, ϕ̃i,p) = min

(
1,

p(yi|ϕ̃i,p; θk)
p(yi|ϕi,p−1; θk)

)
2. q

(2)
θk

is a random permutation of the ϕi: generate a random permutation σ of {1, 2, . . . , N}
and set ϕ̃i,p = ϕσ(i),p−1. This kernel is not used anymore (deprecated).

3. q
(3)
θk

is a succession of d unidimensional Gaussian random walks: each component of ϕi are
successively updated.

4. q
(4)
θk

is a multidimensional random walk N (ϕi,p−1, κΩk). The dimension changes for each
iteration of the algorithm between 2 and the dimension of ϕi cyclicly, and it iterates and
updates consecutive subvector of ϕi. This kernel is symmetric and then

α(ϕi,p−1, ϕ̃i,p) = min

(
1,

p(yi, ϕ̃i,p; θk)

p(yi, ϕi,p−1; θk)

)

Then, the simulation-step at iteration k consists in runningm1 iterations of the Hasting-Metropolis

with proposal q
(1)
θk

, m2 iterations with proposal q
(2)
θk

, m3 iterations with proposal q
(3)
θk

and m4 it-

erations with proposal q
(4)
θk

.

Remark 1 : During the �rst Kb iterations (�burning� iterations) of SAEM, we only run the
MCMC algorithm but the parameters are not updated.

Remark 2 : When the number N of subjects is small, convergence of the algorithm can be
improved by running L Markov Chain instead of only one. The simulation step requires to draw
L sequences ϕ(k,1), . . . , ϕ(k,L) at iteration k and to combine stochastic approximation and Monte
Carlo in the approximation step:

Qk(θ) = Qk−1(θ) + γk

(
1

L

L∑
`=1

log p(y, ϕ(k,`); θ)−Qk−1(θ)

)
(1.11)

1.1.3 The Simulated Annealing SAEM algorithm

Convergence of SAEM can strongly depend on the initial guess if the likelihood ` possesses
several local maxima. The Simulated Annealing version of SAEM improves the convergence of
the algorithm toward the global maximum of `.

For the sake of simplicity, we will consider here a constant residual error model g = a. Let

U(y, ϕ; θ) =
1

2a2

∑
i,j

(yij − f(xij , h(ϕi)))
2 +

1

2

N∑
i=1

(ϕi − Ciµ)′Ω−1(ϕi − Ciµ)

8 Monolix 4.3.3



1.1. ESTIMATION OF THE PARAMETERS

Then, we can write the complete likelihood:

p(y, ϕ; θ) = C(θ) e−U(y,ϕ;θ)

where C(θ) is a normalizing constant that only depends on θ.

For any temperature T ≥ 0, we consider the complete model

pT (y, ϕ; θ) = CT (θ) e−
1
T
U(y,ϕ;θ)

where CT (θ) is a normalizing constant. This model consists in replacing the variance matrix Ω
by TΩ and the residual variance a2 by Ta2. In other words, a model �with a large temperature�
is a model with large variances.

We introduce a decreasing temperature sequence (Tk, 1 ≤ k ≤ K) and use the MCMC-
SAEM algorithm considering the complete model pTk(y, ϕ; θ) at iteration k (while the usual
version of MCMC-SAEM uses Tk = 1 at each iteration). The sequence (Tk) is large during the
�rst iterations and decreases to 1 with exponential rate. This is done by choosing large initial
variances Ω0 and a20 and setting

Ω̃k+1 =
1

N

(
s2,k −

N∑
i=1

(Ciµk+1)s
′
1,i,k −

N∑
i=1

s1,i,k(Ciµk+1)
′ +

N∑
i=1

(Ciµk+1)(Ciµk+1)
′

)
(1.12)

ak+1 =

√
s3,k
Ntot

(1.13)

Ωk+1 = max
(
τΩk , Ω̃k+1

)
(1.14)

a2k+1 = max
(
τa2k ,

s3,k
N

)
(1.15)

during the �rst iterations of the algorithm and where 0 ≤ τ ≤ 1.

These large values of the variances make the conditional distribution p(φ|y; θ) less concen-
trated around its mode. This procedure allows the sequence (θk) to escape from the local maxima
of the likelihood and to converge to a neighborhood of the global maximum of `. After that, the
usual MCMC-SAEM algorithm is used, estimating the variances at each iteration.

Remark 1: The Simulated Annealing version of SAEM is performed during the �rst Ksa itera-
tions. Of course, SAEM without any simulated annealing can be run by setting τ = 0. On the
other hand, simulated annealing is obtained with τ close to 1.

Remark 2: We can use two di�erent coe�cients τ1 and τ2 for Ω and a2 in Monolix. It is
possible, for example, to choose τ1 < 1 and τ2 > 1, with a small initial residual variance and
large initial inter-subject variances. In this case, SAEM tries to obtain the best possible �t
during the �rst iterations, allowing a large inter-subject variability. During the next iterations,
this variability is reduced and the residual variance increases until reaching the best possible
trade-o� between these two criteria.

9 Monolix 4.3.3



1.2. SOME EXTENSIONS

1.2 Some extensions

1.2.1 Model with censored data

The statistical models are described in Section 2.5.

The maximum likelihood estimation is based on the log-likelihood function L(yobs ; θ) of the
response yobs with θ = (µ,Ω, a, b, c) the vector of all the parameters of the model

L(yobs ; θ) = log

(
N∏
i=1

∫ ∫
p(yobsi , ycensi , ϕi; θ) dϕi dy

cens
i

)
, (1.16)

where p(yobsi , ycensi , ϕi; θ ) is the likelihood of the complete data (yobsi , ycensi , ϕi) of the i-th subject.
The complete likelihood of the i-th subject is equal to:

p(yobsi , ycensi , ϕi; θ) =
∏

(i,j)∈Iobs

p(yobsij |ϕi; θ)p(ϕi; θ)
∏

(i,j)∈Icens

p(ycensij |yobsi· , ϕi; θ)p(ϕi; θ),

Samson et al. proposed in [9] an extension of the SAEM algorithm to handle left-censored
data in NLMEM as an exact Maximum Likelihood estimation method. The simulation of the
censored data with a truncated Gaussian distribution is included in the MCMC procedure. The
convergence of this extended SAEM algorithm is proved under general conditions.

In this case,

p(yobsij |ϕi; θ) = π(yobsij ; f(ϕi, tij), g
2(ϕi, tij)) , if (i, j) ∈ Iobs and

p(ycensij |yobsi· , ϕi; θ) = π(ycensij ; f(ϕi, tij), g
2(ϕi, tij)) 1yij<LOQij , if (i, j) ∈ Icens,

where π(x;m, v) is the probability density function of the Gaussian distribution with mean m
and variance v, evaluated at x.

Interval censored data are treated analogously. In this case, as explained in Section 2.5.2, it
is considered

p(ycensij |yobsi· , ϕi; θ) = π(ycensij ; f(ϕi, tij), g
2(ϕi, tij)) 1yij∈[LODij ,LOQij)

where (LODij , LOQij) is the censoring interval.

1.2.2 Estimation with a prior distribution

It can be incorporated prior distributions on the �xed e�ect parameters µ to be handled by
the SAEM algorithm.

10 Monolix 4.3.3



1.2. SOME EXTENSIONS

The parameter µ is considered as a random Gaussian variable. Let us denote µ? the mean
of this prior distribution and V? its diagonal variance matrix:

µ ∼ N (µ?, V?) (1.17)

The parameters µ? and V? are �xed.

Let θ? = (µ?, V?,Ω, ξ) and d? be the length of µ?. Then, the complete log-likelihood of
(y, ψ, µ) can be written

log p(y, ϕ, µ; θ?) = −
∑
i,j

log(g(xij , h(ϕi); ξ))−
1

2

∑
i,j

(
yij − f(xij , h(ϕi))

g(xij , h(ϕi); ξ)

)2

−N
2

log(|Ω|)− 1

2

N∑
i=1

(ϕi − Ciµ)′Ω−1(ϕi − Ciµ)

−1

2
log(|V?|)−

1

2
(µ− µ?)′V?−1(µ− µ?)−

Ntot +Nd+ d?
2

log(2π)

SAEM allows two estimation method for parameters with prior distributions:

• maximum a posteriori or MAP:

The simulation step and the approximation step are similar to the ones of Section 1.1.1.
Then, µk+1 is obtained in the maximization step as follows:

µk+1 =

(
V?
−1 +

N∑
i=1

Ci
′Ωk
−1Ci

)−1(
V?
−1µ? +

N∑
i=1

Ci
′Ωk
−1s1,i,k

)

while Ωk+1 and σ2k+1 are computed as before.

• posterior distribution: µ is treated as unobserved variables so, the simulation step includes

the simulation of µk+1 by using random walks as proposal kernels q
(1)
θ?

and q
(2)
θ?

(like kernel
3 and 4 for ϕ described above).

Then approximation and maximization steps remain the same, just that the simulated
µk+1 are supposed as known (or �xed).

Of course, it is possible to combine several methods to estimate the complete set of parame-
ters: we can �x some parameters, use maximum likelihood estimation for some other parameters
and combine methods for parameters with prior information for the other ones.

Also, as for individual parameters, it is possible to de�ne prior distributions as a transform
of a Gaussian random variable

H−1(µ) ∼ N (H−1(µ?), V?)

11 Monolix 4.3.3



1.2. SOME EXTENSIONS

where H is a monotonically increasing function de�ned in R. In this case, µ? is the typical value
of the corresponding µ.

Remark: M.A.P estimators are only possible for Gaussian prior distributions on covari-
ate coe�cients. For the intercepts, M.A.P is only available when the corresponding individual
parameter holds ϕ = H−1(ψ) ∼ N .

1.2.3 Modeling the inter-occasion variability

Mixed e�ects models with IOV are described in Section 2.6.

An extension of the SAEM algorithm for models with two levels of random e�ects can be
found in [7]. The methodology proposed in this paper is limited to only two periods and assumes
IOV on each parameter (Γ is a diagonal matrix with non zero element on the diagonal). We
have extended this methodology to any number of occasions and also to any structure of the
IOV covariance matrix Γ. Monolix 4.3.3 includes also the extension to any number of levels
of IOV.

1.2.4 Mixture models and mixture of models

Mixture models and model of mixtures are described in Section 2.8.

Mixture models

The mixture models are modeled by using latent covariates, it means, non-observed covariates
Li having probabilities p(Li = m) = πim.

In this case the complete log-likelihood can be written as

log p(y, ψ; θ) =
∑
i

log

(∑
m

πimp(yi, ψi|Li = m; theta)

)

it means that ψ follows a mixture model, so the simulation step must take this into account
when simulating the individual parameters.

If we put together Lim with the other covariates Ci into the matrix Cim, then θk+1 can be

12 Monolix 4.3.3
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obtained in the maximization step as follows:

µk+1 =

∑
i,m

πimCim
′Ωk
−1Cim

−1∑
i,m

πimCim
′Ωk
−1s1,i,k (1.18)

Ωk+1 =
1

N

s2,k −∑
i,m

πim (Cimµk+1) s
′
1,i,k −

∑
i,m

πims1,i,k(Cimµk+1)
′ (1.19)

+
∑
i,m

πim(Cimµk+1)(Cimµk+1)
′

 (1.20)

Mixture of models

Let us denote by pim(ψi) the proportions for within subject mixture models (WSMM) and
πim(ψi) the probabilities for between subject mixture models (BSMM), for subject i and group
m knowing the individual parameters ψi. Let fm be the regression function for group m and gm
the standard deviation of the corresponding error model.

For WSMM, supposing for example that there are 2 groups, we have

f(xij , ψi) = pi1(ψi)f1(xij , ψi) + pi2(ψi)f2(xij , ψi)

and so

log p(y|ψ; θ) = −
∑
i,j

log(g(xij , ψi, ξ))−
1

2

∑
i,j

(
yij − f(xij , ψi)

g(xij , ψi, ξ)

)2

− Ntot

2
log(2π)

can be computed as before.

For BSMM, we have that

log p(y|ψ; θ) =
∑
i

log

(∑
m

πim(ψi)p(yi|ψi, Gi = m; theta)

)

where p(yi|ψi, Gi = m; theta) are the probabilities for subject i to be in group m. They satisfy
then

log p(yi|ψi, Gi = m; theta) = −
∑
j

log(gm(xij , ψi, ξ))−
1

2

∑
j

(
yij − fm(xij , ψi)

gm(xij , ψi, ξ)

)2

− ni
2

log(2π)

with ni representing the number of observations of subject i.

That means that the approximation step must be adapted in both cases, but the maximization
step must be changed only for the estimations of the residual error model parameters ξ.
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1.3. ESTIMATION OF THE FISHER INFORMATION MATRIX

1.3 Estimation of the Fisher Information matrix

Let θ? be the true unknown value of θ, and let θ̂ be the maximum likelihood estimate of
θ. If the observed likelihood function ` is su�ciently smooth, asymptotic theory for maximum-
likelihood estimation holds and

√
N(θ̂ − θ?) −→

N→∞
N (0, I(θ?)−1) (1.21)

where I(θ?) = −∂2θ log `(y; θ?) is the true Fisher information matrix. Thus, an estimate of the

asymptotic covariance of θ̂ is the inverse of the Fisher information matrix I(θ̂) = −∂2θ log `(y; θ̂).

1.3.1 Linearization of the model

The Fisher information matrix of the nonlinear mixed e�ects model de�ned in (1) cannot be
computed in a closed-form.

An alternative is to approximate this information matrix by the Fisher information ma-
trix of the Gaussian model deduced from the nonlinear mixed e�ects model after linearization
of the function f around the conditional expectation of the individual Gaussian parameters

(E
(
φi|y; θ̂

)
, 1 ≤ i ≤ N). The Fisher information matrix of this Gaussian model is a block

matrix (no correlations between the estimated �xed e�ects and the estimated variances). The
gradient of f is numerically computed.

Remark 1: We do not recommend the linearization of the model to estimate the parameters of
the model, as it is done with the FO and FOCE algorithms. On the other hand, many numerical
experiments have shown that this approach can be used to estimate the Fisher information
matrix.

Remark 2: Obviously, this approach cannot be used with discrete data models nor mixture
models . . .

1.3.2 A stochastic approximation of the Fisher Information Matrix

It is possible to obtain an estimation of the Fisher information matrix using the Louis's
missing information principle [6]:

∂2θ log `(y; θ) = E
(
∂2θ log p(y, ϕ; θ)|y; θ

)
+ Cov

(
∂θ log p(y, ϕ; θ)|y; θ

)
(1.22)

14 Monolix 4.3.3



1.4. ESTIMATION OF THE INDIVIDUAL PARAMETERS

where

Cov
(
∂θ log p(y, ϕ; θ)|y; θ

)
= E

(
∂θ log p(y, ϕ; θ)∂θ log p(y, ϕ; θ)′|y; θ

)
− E

(
∂θ log p(y, ϕ; θ)|y; θ

)
E
(
∂θ log p(y, ϕ; θ)|y; θ

)′
and

∂θ log g(y; θ) = E
(
∂θ log p(y, ϕ; θ)|y; θ

)
Here, ∂θu is the gradient of u (i.e. the vector of �rst derivatives of u with respect to θ) and ∂2θu
is the hessian of u (i.e. the matrix of second derivatives of u with respect to θ).

Then, using SAEM, the matrix ∂2θ log `(y; θ̂) can be approximated by the sequence (Hk)
de�ned as follows:

∆k = ∆k−1 + γk (∂θ log f(y, φk; θk)−∆k−1)

Dk = Dk−1 + γk
(
∂2θ log f(y, φk; θk)−Dk−1

)
Gk = Gk−1 + γk

(
∂θ log f(y, φk; θk)∂θ log f(y, φk; θk)

t −Gk−1
)

Hk = Dk +Gk −∆k∆
t
k

1.4 Estimation of the individual parameters

When the parameters of the model have been estimated, we can estimate the individual
parameters (ψi). To do that, we will estimate the individual normally distributed parameters
(ϕi) and derive the estimates of (ψi) using the transformation ψi = h(ψi).

Let θ̂ be the estimated value of θ computed with the SAEM algorithm and let p(ϕi|yi; θ̂) be
the conditional distribution of ϕi for 1 ≤ i ≤ N .

We use the MCMC procedure used in the SAEM algorithm to estimate these conditional
distributions. More precisely, for 1 ≤ i ≤ N , we empirically estimate:

• the conditional mode (or Maximum A Posteriori) m(ϕi|yi; θ̂) = Arg maxϕi p(ϕi|yi; θ̂),

• the conditional mean E(ϕi|yi; θ̂),

• the conditional standard deviation sd(ϕi|yi; θ̂).

Remarks:

1. The prior distribution of ϕi is a normal distribution, but not the conditional distribution
p(ϕi|yi; θ̂) (remember that the structural model is not a linear function of ϕi. . . ). Then, the
conditional mode m(ϕi|yi; θ̂) and the conditional expectation E(ϕi|yi; θ̂) are two di�erent
predictors of ϕi.
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1.5. ESTIMATION OF THE LIKELIHOOD

2. If the transformation h is not linear,

E
(
ψi|yi; θ̂

)
= E

(
h(ϕi|yi; θ̂

)
6= h

(
E
(
ϕi|yi; θ̂

))
In Monolix, we estimate E

(
ϕi|yi; θ̂

)
and E

(
ψi|yi; θ̂

)
.

The number of iterations of the MCMC algorithm used to estimate the conditional mean and
standard deviation is adaptively chosen as follows:

1. The (ϕi) are initialized with the last value obtained in SAEM

2. We run the Hastings-Metropolis with kernel q(1), q(3) and q(4) and compute at each iteration
the empirical conditional mean and s.d. of ϕi:

ei,K =
1

K

K∑
k=1

ϕi,k (1.23)

sdi,K =

√√√√ 1

K

K∑
k=1

ϕ2
i,k − e2i,K (1.24)

where ϕi,k is the value of ϕi at iteration k of the MCMC algorithm.

3. we stop the algorithm at iteration K and use ei,K and sdi,K to estimate the conditional
mean and s.d. of ϕi if, for any K − Lmcmc + 1 ≤ k ≤ K,

(1− ρmcmc)ēK ≤ ēk ≤ (1 + ρmcmc)ēK (1.25)

(1− ρmcmc)s̄dK ≤ s̄dk ≤ (1 + ρmcmc)s̄dK

where 0 < ρmcmc < 1. That means that the sequence of empirical means and s.d. must
stay in a ρmcmc-con�dence interval during Lmcmc iterations.

1.5 Estimation of the likelihood

1.5.1 Linearization of the model

The likelihood of the nonlinear mixed e�ects model de�ned in (1) cannot be computed in a
closed-form.

An alternative is to approximate this likelihood by the likelihood of the Gaussian model
deduced from the nonlinear mixed e�ects model after linearization of the function f around the
predictions of the individual parameters (ϕi, 1 ≤ i ≤ N).
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1.5. ESTIMATION OF THE LIKELIHOOD

1.5.2 Estimation using importance sampling

The likelihood of the observations can be estimated without any approximation using a
Monte-Carlo approach. The likelihood ` of the observations can be decomposed as follows

`(y; θ) =

∫
p(y, ϕ; θ) dϕ

=

∫
h(y|ϕ; θ)π(ϕ; θ) dϕ

where π is the so-called prior distribution of ϕ. According to (2.2), π is a Gaussian distribution.

For any distribution π̃ absolutely continuous with respect to the prior distribution π, we can
write

`(y; θ) =

∫
h(y|ϕ; θ)

π(ϕ; θ)

π̃(ϕ; θ)
π̃(ϕ; θ) dϕ

Then, `(y; θ) can be approximated via an Importance Sampling integration method:

1. draw ϕ(1), ϕ(2), . . . , ϕ(M) with the distribution π̃(·; θ),

2. let

`M (y; θ) =
1

M

M∑
j=1

h(y|ϕ(j); θ)
π(ϕ(j); θ)

π̃(ϕ(j); θ)
(1.26)

The statistical properties of the estimator `M (y; θ) of the likelihood `(y; θ) strongly depend
on the sampling distribution π̃. First, note that

E (`M (y; θ)) = `(y; θ),

Var (`M (y; θ)) = O(1/M).

Furthermore, if π̃ is the conditional distribution p(φ|y; θ), the variance of the estimator is null
and ˆ̀

M (y; θ) = `(y; θ) for any value of M . That means that an accurate estimation of `(y; θ)
can be obtained with a small value of M if the sampling distribution is close to the conditional
distribution p(φ|y; θ).

In Monolix, for i = 1, 2, . . . , N , we empirically estimate the conditional mean E
(
ϕi|yi; θ̂

)
and the conditional variance Var

(
ϕi|yi; θ̂

)
of ϕi as described above. Then, the ϕi

(j) are drawn

with the sampling distribution π̃ as follows:

ϕi
(j) = E

(
ϕi|yi; θ̂

)
+ Var

(
ϕi|yi; θ̂

) 1
2 × Tij

where (Tij) is a sequence of i.i.d. random variables distributed with a t−distribution with ν
degrees of freedom.

It is possible to use the default value ν = 5. It is also possible to automatically test di�erent
d.f in {2, 5, 10, 20} and to select the one that provides the smallest empirical variance for `M (y; θ).
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1.6 Estimation of the weighted residuals

1.6.1 The Population Weighted Residuals

The Population Weighted Residuals are evaluated as

PWRESij =
yij − ŷpopij

σ̂popij

where ŷpopij is the population prediction of yij and (σ̂popij )2 = V arθ̂(yij) is the variance of yij .

Two population predictions are proposed in Monolix :

1. the pop. param. prediction f
(
xij ;h

(
Eθ̂(ϕi)

))
= f(xij ;h(Ciµ̂))

2. the pop. mean prediction Eθ̂(f(xij ;ψi))) = Eθ̂(f(xij ;h(ϕi))).

Here, Eθ̂(f(xij ;h(ϕi)) and V arθ̂(yij) are estimated with a Monte-Carlo procedure.

1.6.2 The Individual Weighted Residuals

The Individual Weighted Residuals are evaluated as

IWRESij =
yij − ŷindij

σ̂indij

where ŷindij = f(xij ; ψ̂i) is the individual prediction of yij and (σ̂indij )2 = g(xij ; ψ̂i, ξ̂)
2 is the

residual variance of yij .

The ψ̂i's are the individual estimates of the ψi's described in Section 1.4 (the conditional
modes or the conditional means)

Remark: When a transformed residual error model is used (an exponential error model for
instance), the weighted residuals are computed using t(y) instead of y.

1.6.3 The Normalized Prediction Distribution

The Normalized Prediction Distribution Errors are de�ned as follow

NPDEij = Φ−1(p̂ij)

where Φ is the N (0, 1) cumulative distribution function and where p̂ij is an empirical estimator
of

pij = P(Yij < yij)

obtained by Monte-Carlo.
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1.7 Inputs and outputs

1.7.1 The inputs

To summarize, Monolix requires to de�ne the model and to �x some parameters used for
the algorithms. First, it is necessary to de�ne:

• the structural model, that is the regression function f de�ned in (2.1),

• the covariate model, that is the structure of the matrix µ de�ned in (2.2) and the covariates
(ci).

• the variance-covariance model for the random e�ects, that is the structure of the variance-
covariance matrix Ω de�ned in (2.2).

• the residual variance model, that is the regression function g.

Then, it is necessary to specify several parameters for running the algorithms:

• the SAEM algorithm requires to specify

� the initial values of the �xed e�ects µ0, the initial variance-covariance matrix Ω0 of
the random e�ects and the initial residual variance coe�cients a0, b0 and c0,

� the sequence of step sizes (γk), that is the numbers of iterations (K1,K2) and the
coe�cients (a1, a2) de�ned in (1.5) and (1.6),

� the number of burning iterations Kb used with the same value θ0 before updating the
sequence (θk).

• the MCMC algorithm requires to set

� the number of Markov Chains L,

� the numbers m1, m2, m3 and m4 of iterations of the Hasting-Metropolis algorithm,

� the probability of acceptance ρ for kernel q(3) and q(4),

• the algorithm to estimate the conditional distribution of the (ϕi) requires to set

� the width of the con�dence interval ρmcmc (see (1.25),

� the number of iterations Lmcmc.

• the Simulated Annealing algorithm requires to set

� the coe�cient τ1 and τ2 de�ning the decrease of the temperature (see (1.14,1.15))

� the number of iterations Ksa.

• the Importance Sampling algorithm requires to set

� the Monte Carlo number M used to estimate the observed likelihood (see (1.26)).
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1.7.2 The outputs

a) Estimation of the parameters:

The SAEM algorithm computes the maximum likelihood estimate θ̂ and estimates, the MAP
for the corresponding parameters with priors. It computes also a rough estimation of the condi-
tional expectation and s.d. of the individual parameters.

Recall that d is the number of individual parameters, then for j = 1, 2 . . . d, we estimate the
vector of �xed e�ects µ (intercept and coe�cients of the covariates) by (µ̂).

Let Ω = (ωjl, 1 ≤ j, l ≤ d). Then, we estimate ωjl by ω̂jl, for all 1 ≤ j, l ≤ d. The residual

error model parameters ξ are also estimated by ξ̂.

a) Estimation of the Fisher information matrix:

It computes the estimators covariance matrix I(θ̂)−1/N de�ned in Section 1.3.

With it we can

1. estimate the standard errors of µ,

2. test if some components of µ are null by computing the signi�cance level of the Wald test.

3. estimate the standard error of ω̂jl, for all 1 ≤ j, l ≤ d.

4. estimate the standard errors of ξ̂.

b) Estimation of the conditional distributions:

The MCMC algorithm provides an estimation of the conditional means, conditional modes
and conditional standard deviations of the individual parameters and of the random e�ects.

It allows also to simulate the population parameters with priors that where chosen to use the
posterior distribution estimator.

c) Estimation of the likelihood:

The Importance Sampling algorithm computes an estimate `M (y; θ̂) of the observed likelihood
together with its standard error.

Also, the individual contribution to the total log-likelihood is computed.

d) Hypothesis testing and model selection:

We can test the covariate model, the covariance model and the residual error model.
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The AIC and BIC criteria are de�ned by

AIC = −2 log `M (y; θ̂) + 2P (1.27)

BIC = −2 log `M (y; θ̂) + log(N)P (1.28)

where P is the total number of parameters to be estimated and N is the number of subjects.

When comparing two nested modelsM0 andM1 with dimensions P0 and P1 (with P1 > P0),
the Likelihood Ratio Test uses the test statistic

LRT = 2(log `M,1(y; θ̂1)− log `M,0(y; θ̂0))

According to the hypotheses to test, the limiting distribution of LRT under the null hypothesis
is either a χ2 distribution, or a mixture of a χ2 distribution and a δ −Dirac distribution. For
example:

- to test whether some �xed e�ects are null, assuming the same covariance structure of the
random e�ects, one should use

LRT −→
N→∞

χ2(P1 − P0)

- to test whether some correlations of the covariance matrix Ω are null, assuming the same
covariate model, one should use

LRT −→
N→∞

χ2(P1 − P0)

- to test whether the variance of one of the random e�ects is zero, assuming the same
covariate model, one should use

LRT −→
N→∞

1

2
χ2(1) +

1

2
δ0

e) Estimation of the weighted residuals:

The PopulationWeighted Residuals (PWRESij), the Individual Weighted Residuals (IWRESij)
and the Normalized Prediction Distribution Errors (NPDEij) are computed as described Section
1.6
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Chapter 2

Statistical models

2.1 The nonlinear mixed e�ects model

Detailed and complete presentations of the nonlinear mixed e�ects model can be found in
[1, 2, 8]. See also the many references therein.

We consider the following general nonlinear mixed e�ects model for continuous outputs:

yij = f(xij , ψi) + g(xij , ψi, ξ)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni (2.1)

Here,

• yij ∈ R is the jth observation of subject i,

• N is the number of subjects,

• ni is the number of observations of subject i,

• the regression variables, or design variables, (xij) are assumed to be known, xij ∈ Rnx ,

• for subject i, the vector ψi = (ψi,` ; 1 ≤ ` ≤ nψ) ∈ Rnψ is a vector of nψ individual
parameters:

ψi = H(µ, ci, ηi) (2.2)

where

� ci = (cim ; 1 ≤ m ≤M) is a known vector of M covariates,

� µ is an unknown vector of �xed e�ects of size nµ,

� ηi is an unknown vector of normally distributed random e�ects of size nη:

ηi ∼i.i.d. N (0,Ω)
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2.2. INDIVIDUAL PARAMETERS MODEL

• the residual errors (εij) are random variables with mean zero and variance 1,

• the residual error model is de�ned by the function g and some parameters ξ.

Here, the parameters of the model are θ = (µ,Ω, ξ). We will denote `(y; θ) the likelihood of
the observations y = (yij ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni) and p(y, ψ; θ) the likelihood of the complete
data (y, ψ) = (yij , ψi ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni). Thus,

`(y; θ) =

∫
p(y, ψ; θ) dψ.

Let us see now the statistical model used in Monolix 4.3.3 more in details.

2.2 The statistical model for the individual parameters

In Monolix 4.3.3 , we assume that ψi is a transformation of a Gaussian random vector ϕi:

ψi = h(ϕi) (2.3)

where, by rearranging the covariates (cim) into a matrix Ci, ϕi can be written as

ϕi = Ciµ+ ηi (2.4)

2.2.1 Examples of transformations

Here, di�erent transformations (h`) can be used for the di�erent components of ψi = (ψi,`)
where ψi,` = h`(ϕi,`) for ` = 1, 2, . . . , `. Let us denote by Φ(u) the cumulative distribution
function of a Gaussian distributed random variable.

• ψi,` has a log-normal distribution if h`(u) = eu,

• assuming that ψi,` takes its values in (0, 1), we can use a logit transformation h`(u) =
1/(1 + e−u), or a probit transformation h`(u) = Φ(u).

• assuming that ψi,` takes its values in (A,B), we can de�ne h`(u) = A+ (B−A)/(1 + e−u),
or h`(u) = A+ (B −A)Φ(u).

In the following, we will use either the parameters ψi or the Gaussian transformed parameters
ϕi = h−1(ψi).

The model can address continuous and/or categorical covariates.
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2.2. INDIVIDUAL PARAMETERS MODEL

2.2.2 Example of continuous covariate model

Consider a PK model that depends on volume and clearance and consider the following
covariate model for these two parameters:

CLi = CLpop

(
Wi

Wpop

)βCL,W ( Ai
Apop

)βCL,A
eηi,1

Vi = Vpop

(
Wi

Wpop

)βV,W
eηi,2

Where Wi and Ai are the weight and the age of subjet i and where Wpop and Apop are some
�typical� values of these two covariates in the population. Here, ψi will denote the PK parameters
(clearance and volume) of subject i and ϕi its log-clearance and log-volume. Let

W ?
i = log

(
Wi

Wpop

)
; A?i = log

(
Ai
Apop

)
Then,

ϕi =

(
log(CLi)
log(Vi)

)

=

(
1 0 W ?

i A?i 0
0 1 0 0 W ?

i

)
log(CLpop)
log(Vpop)
βCL,W
βCL,A
βV,W

+

(
ηi,1
ηi,2

)

= Ciµ+ ηi

2.2.3 Example of categorical covariate model

Assume that some categorical covariate Gi takes the values 1, 2, . . . , K. Assume that if
patient i belongs to group k, i.e. Gi = k, then

log(CLi) = log(CLpop,k) + ηi

where CLpop,k is the population clearance in group k.

Let k? be the reference group. Then, for any group k, we will decompose the population
clearance CLpop,k as

log(CLpop,k) = log(CLpop,k?) + βk

where βk? = 0.
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The variance of the random e�ects can also depend on this categorical covariate:

ηi ∼ N (0,Ωk) if Gi = k

Remark: It is assumed in Monolix 4.3.3 that the correlation matrix of the random e�ect is
the same for all the groups. In other words, only the variances of the random e�ects can di�er
from one group to another.

2.3 The residual error model

The within-group errors (εij) are supposed to be Gaussian random variables with mean zero
and variance 1. Furthermore, we suppose that the εij and the ηi are mutually independent.

Di�erent error models can be used in Monolix 4.3.3 :

• the constant error model assumes that g = a and ξ = a,

• the proportional error model assumes that g = b f and ξ = b,

• a combined error model assumes that g = a+ b f and ξ = (a, b),

• an alternative combined error model assumes that g =
√
a2 + b2 f2 and ξ = (a, b),

• a combined error model with power assumes that g = a+ b f c and ξ = (a, b, c),

• . . .

Furthermore, all these error models can be applied to some transformation of the data:

t(yij) = t(f(xij , ψi)) + g(xij , ψi, ξ)εij (2.5)

For example:

• the exponential error model assumes that y > 0:

t(y) = log(y)

y = fegε

• the logit error model assumes that 0 < y < 1:

t(y) = log(y/(1− y))

y =
f

f + (1− f)e−gε
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• the logit error model can be extended if we assume that A < y < B:

t(y) = log((y −A)/(B − y))

y = A+ (B −A)
f −A

f −A+ (B − f)e−gε

It is possible with Monolix to assume that the residual errors (εij) are correlated:

corr(εi,j , εi,j+1) = ρ(xi,j+1−xi,j) (2.6)

Here, we assume that 0 ≤ ρ < 1 and that for any i, (xi,j , 1 ≤ j ≤ ni) is an increasing sequence
of regression scalar variables.

2.4 Multi-responses model

The basic model can be extended to multi-responses:

y
(1)
ij = f1(x

(1)
ij , ψi) + g1(x

(1)
ij , ψi; ξ1)ε

(1)
ij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni1

...
...

y
(L)
ij = fL(x

(L)
ij , ψi) + gL(x

(L)
ij , ψi; ξL)ε

(L)
ij , 1 ≤ i ≤ N , 1 ≤ j ≤ niL

This is useful, for example, for PKPD models in which the input of the PD model x
(2)
ij is the

concentration, that is the output of the PK model f1(x
(1)
ij , ψi).

2.5 Model with censored data

2.5.1 BLQ data

In some context, because of assay limitation, when data yij are inferior to a limit of quanti�-
cation (LOQ), we do not observe yij but only the censored value LOQ. These data are usually
named BLQ (Below the Limit of Quanti�cation) data or left-censored data.

Let denote Iobs = {(i, j)|yij ≥ LOQ} and Icens = {(i, j)|yij ≤ LOQ} the index sets of the
uncensored and censored observations respectively. For (i, j) ∈ Icens, let ycensij = yij denote the
unknown value of the censored observation j of subject i. Let denote ycensi the vector of censored
observations of subject i. Finally, we observe

yobsij =

{
yij if (i, j) ∈ Iobs,
LOQ if (i, j) ∈ Icens.

We denote yobsi = (yobsi1 , . . . , y
obs
ini

) as the observations of subject i and yobs = (yobs1 , . . . , yobsN ) the
total observations dataset.
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2.6. INTER-OCCASION VARIABILITY

2.5.2 Interval censored data

It is possible now also to model interval censored data, i.e data where it is only known that yij
is above a limit of detection LODij but below the limit of quanti�cation ycensij ∈ [LODij , LOQij).
The intervals could be (−∞, LOQij) (left censored data, as above) and [LOQij ,+∞) (right
censored data).

2.6 Modeling the inter-occasion variability

We will denote yikj the jth observation for subject i during occasion k:

yikj = f(ψik, tikj) + g(ψik, tikj , ξ)εikj (2.7)

Here, ψik = h(ϕik) is the individual parameter of subject i at occasion k:

ϕik = Cik µ+ ηi + κik (2.8)

- Cik is the matrix of covariates of subject i at occasion k,

- ηi random e�ect of subject i (inter-subject variability): ηi ∼ N (0,Ω),

- κik random e�ect of subject i at occasion k (inter-occasion variability): κik ∼ N (0,Γ),

- ηi and κik are assumed to be independent,

- Ω inter-subject variability covariance matrix,

- Γ inter-occasion variability covariance matrix.

2.7 Discrete data models

The basic model proposed in (2.1) is a regression model used for �tting continuous data that
can be extended for categorical data or count data models. Assume that (yij) takes its values
in {0, 1, 2, . . .}. We de�ne the conditional likelihood of the observations using a mixed e�ects
model:

P(yij = k|ψi) = f(k, xij , ψi) , 1 ≤ i ≤ N , 1 ≤ j ≤ ni (2.9)

In other words, for any i, the probability that yij takes the value k depends on some (unknown)
individual parameter ψi and possibly on some (known) design variable xij .

A mixed hidden Markov models (mixed HMM, or MHMM) assumes that there exists some
non observed sequences (zij) (the states) that take their values in 1, 2, . . . L such that, for any i,
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2.8. MIXTURE MODELS AND MODEL MIXTURES

• (zij , j ≥ 1) is a Markov Chain,

• conditionally to the sequence of states (zij), the (yij) are independent random variables

• the transition probabilities P(zi,j+1 = v|zij = u) and the emission probabilities (i.e. condi-
tional probabilities) P(yij = k|zij = u) depend on some individual parameters ψi.

2.8 Mixture models and model mixtures

2.8.1 Mixture models

In Monolix, a mixture model assume that there exist some �latent� categorical covariate
G that takes K values. Then, the mixture model reduces to the categorical covariate model
described Section 2.2 but here, the categorical covariates are unknown: they are treated as
random variables and the probabilities

πk = P(Gi = k)

are part of the statistical model and should be estimated as well.

2.8.2 Model mixtures

Let f1, f2, . . . fK be K di�erent structural models,

• Between Subject Model Mixture (BSMM)

We assume that some categorical covariate G takes K values and that

yij = fk(xij , ψi) + εij , if Gi = k

In a BSMM model, the �latent� categorical covariates are unknown: they are treated as
random variables and the probabilities

πk = P(Gi = k)

are part of the statistical model and should be estimated as well.

• Within Subject Model Mixture (WSMM)

For any patient i, let pi,1, pi,2, . . . , pi,K be K proportions such that

yij = fi(xij , ψi) + εij

fi = pi,1f1 + pi,2f2 + . . .+ pi,KfK

In a WSMM model, the proportions (pi,k) are additional individual parameters that should
be modeled as well (under the constraint that the sum is 1).

28 Monolix 4.3.3



2.9. PRIOR MODELS

2.9 Prior models on �xed e�ects parameters

It is possible to de�ne prior distribution models on the �xed e�ects. The allowed distributions:

• log-normal

• logit-normal

• probit-normal

• user-de�ned: transformation of a gaussian distribution:

h−1(µ) ∼ N (µ0, σ
2
µ)

where h is any increasing function de�ned for all real numbers.
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