

MONOLIXSUITE 2019 1 MODELING LANGUAGE 5 APPLICATIONS

MonolixSuite demo

- 1. Introduction to MonolixSuite 2019
- 2. Modeling and simulation workflow on a PK/PD example
 - Data visualization
 - Step by step modeling
 - Simulations

3. Conclusions

MonolixSuite 2019

PKPD Remifentanil - Intro

Remifentanil:

- potent, and short-acting opioid analgesic drug
- used for sedation and to relieve pain during surgery, in combination to an anaesthetic
- depth of sedation is recorded through electroencephalography

Dataset:

- 65 healthy adults
- **constant infusion rate between 1 and 8 μg.kg⁻¹.min⁻¹ for 4 to 20 minutes**
- PK: dense concentration measurements during infusion and after
- PD: dense electroencephalogram (EEG) measurements

DATA SET FORMAT

General formatting rules

Headers

Headers are free and can be of any length (but avoid special characters)
ID TIME AMT DV DV DV M AGE WT

ID	TIME	AMT	DV	DV_nM	AGE	WT
1	0	10			56	87
1	1		3.5	259	56	87
1	1		2.9	214.6	56	87
1	3.5		2.1	155.4	56	87
1	4		1.6	118.4	56	87

 When loading the data set, the columns are assigned to columntypes to be interpreted correctly.

Data file 06_Eisai_traini BROWSE	ng/for_slides/header_example.csv	Preview DATAVIEWER		Observation t DV_nM () Co	ypes ontinuous O Count/Categorical	O Event	
orus per page. To 25 50 Tuo 500	ID 🕶	TIME 🛩	AMOUNT 🗸	IGNORE -	OBSERVATION -	CONTINUOUS COVARIATE -	CONTINUOUS COVARIATE -
NE NUMBER	ID ↓↑	TIME 11	AMT It	DV J†	DV_nM ↓↑	AGE 11	IGNORE
	1	0	10			56	CATEGORICAL COVARIATE OCCASION
	1	1		3.5	259	56	EVENT ID
	1	1		2.9	214.6	56	IGNORED OBSERVATION OBSERVATION ID
	1	3.5		2.1	155.4	56	CENSORING
				1.6	118.4	56	LIMIT

OBS ID and ADM ID columns

NONMEM

- CMT column used for both administration and observation
- content of CMT column depends on the model

	MO	NO	LIX
--	----	----	-----

- OBS ID column for observations.
 Can be integer or string.
- ADM ID column for doses. Must be an integer.

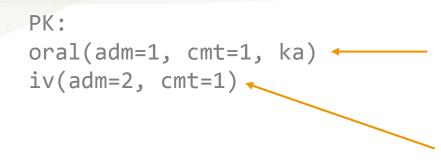
ID	TIME	AMT	DV	EVID	СМТ
1	0	10	0	1	1
1	1	0	3.5	0	2
1	1	0	501.1	0	3
1	3.5	0	2.1	0	2
1	4	0	489.3	0	3

Tagged as OBSERVATION ID

ID	TIME	AMT	DV	ADM	DVID
1	0	10	•	† 1	
1	1		3.5		РК
1	1		501.1		biomarker
1	3.5		2.1		РК
1	4		489.3		biomarker

Tagged as ADMINISTRATION ID

OBSERVATION ID column


- The mapping between the OBS IDs and the model outputs in done in the interface.
- It is possible to have more OBS IDs than model outputs or opposite and leave some unused.

Project Settings Expo	rt Help	
ome Data Structural model In	tial estimates Statistical model & Tasks Comments	
<pre>value. 3 The administration is vi 4 The PK model has one com (clearance Cl). 5 The PD model is a direct</pre>	partment (volume V) and a linear elimination Emax model with baseline (baseline effect EO, ct Emax, and half-maximal effective concentration , EC50} odel ons biomarker biomarker	Model yPK Cc ybiomarke E

ADMINISTRATION ID column

The ADM IDs are used in the administration macros.

doses with ADM ID=1 in the data set are applied with first-order absorption

doses with ADM ID=2 are applied as iv boluses

Censored data

NONMEM

- LOQ column
- if DV < LOQ, the data is handled in a special way:
- M1 = Ignore missing values 'MDV'
- M2 = Likelihood assumes all values are censored at LLOQ 'YLO'
- M3 = Estimate likelihood at times measurements are BLQ
- M4 = Like M3 but also assume measurements are >=0
- M5 = Replace all BLQ with LLOQ/2
- M6 = Replace first BLQ with LLOQ/2, ignore others
- M7 = Replace all BLQ with zero

- CENSORED column to mark censored data (CENS=1)
- LOQ value is put in OBSERVATION column
- LIMIT column to define the bound in the other direction (usually 0)

Covariates

NONMEM

- Covariates values can change over time
- Missing values can be handled in the model using if/then/else

- Covariates must be constant within each individual, or within each occasion of each individual => if varying value really required, use regressors
- missing values are not allowed
 => infer them in the data set
- Strings allowed for categorical covariates (but avoid special characters)

Covariates for visualization

NONMEM

MONOLIX

 Columns tagged as continuous or categorical covariates can be used to stratify/split the plots
 => prepare in the data set columns for future stratification (e.g DOSE)

Amount column

NONMEM

 A dose line can be put in only one compartment (CMT column)
 => for parallel absorptions, two dose lines are required

ID	TIME	AMT	CMT
1	0	100	1
1	0	100	2

MONOLIX

 A dose line can be matched to several absorption macros
 => only 1 dose line required

ID	TIME	AMT	ADM
1	0	100	1

PK:

oral(adm=1,cmt=1,ka=ka1,Tlag,p=F)
oral(adm=1,cmt=1,ka=ka2,p=1-F)

amount 100 split in fraction F and 1-F

Ignoring lines

NONMEM

C column and/or MDV column

- Column IGNORED OBSERVATION. Multiple IGNORED OBSERVATION columns are allowed and can be used to ignore observations for different reasons
- Column IGNORED LINE.

Steady-state

NONMEM

 When ADVAN model used, analytical steady-state solution is used

- additional doses are added before the SS dose
- the number of additional doses can be chosen by the user
- The additional doses can be at negative times
 => if an ODE system is used, t0 must be chosen to allow simulation of the additional doses

Occasions

NONMEM

 OCC column in data set and IOV handled directly in the model

OCC2 = 1 - OCCCL = THETA(1) * EXP(ETA(1) + ETA(2) * OCC + ETA(3)*OCC2)

\$OMEGA 1.2 \$OMEGA BLOCK(1) 0.5 \$OMEGA BLOCK(1) SAME

- OCC column defines different occasions (periods of time) but not necessarily IOV
- index of occasion doesn't matter
- time can restart from zero or not
- IOV can be added via the interface (random effects at OCC level)
- EVID=4 creates a washout and a new occasion
- covariates which vary from one occasion to the next one can be added only if the parameter has IOV (or no IIV nor IOV)

DATXPLORE

Data visualization

MonolixSuite demo

PKPD Remifentanil - data

ID	TIME	AMT	RATE	DV	YTYPE	MDV	AGE	SEX	LBM	TINFCAT
1	0	•		18.85	2	0	30.58	1	56.5075	20
1	0	1439.8	71.99			1	30.58	1	56.5075	20
1	0.5	•		19.91	2	0	30.58	1	56.5075	20
1	1			19.51	2	0	30.58	1	56.5075	20
1	1.5			18.67	2	0	30.58	1	56.5075	20
1	1.5	•		9.51	1	0	30.58	1	56.5075	20
1	2	•		11.5	1	0	30.58	1	56.5075	20
1	2			19.03	2	0	30.58	1	56.5075	20

- Discubject identifier
- TIME: time (minutes)
- AMT: dose amount (μg)
- **α** RATE: infusion rate (µg/min)
- DV: measured Remifentanil concentration (μg/L) or spectral edge frequency (Hz)
- **YTYPE:** if YTYPE=1, Y is remifentanil. If YTYPE=2, Y is spectral edge frequency
- AGE: age (years)
- SEX: 1=male, 0=female
- LBM: lean body mass (kg)
- TINFCAT: infusion duration (minutes)

Datxplore: explore your data

- Plot your data (discrete and continuous) to detect outliers, visualize trends, etc
- Split/filter/color to see covariates dependencies, etc

MONOLIX

Population PK/PD

MonolixSuite demo

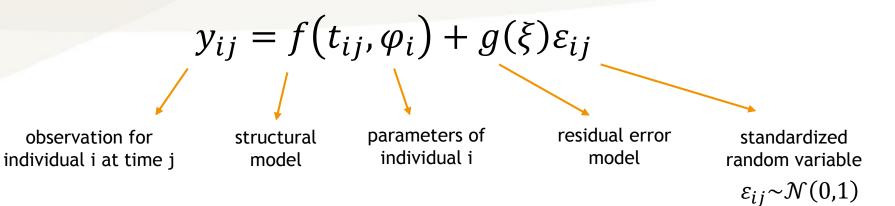
Population approach in Monolix

Data:

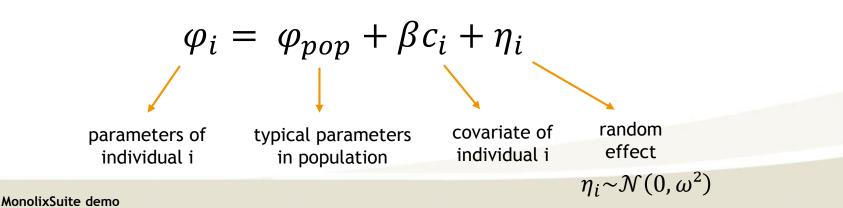
- several individuals
- longitudinal data (repeated measurements over time)
- ⇒ y_{ii} = observation for individual i at time j

Goal:

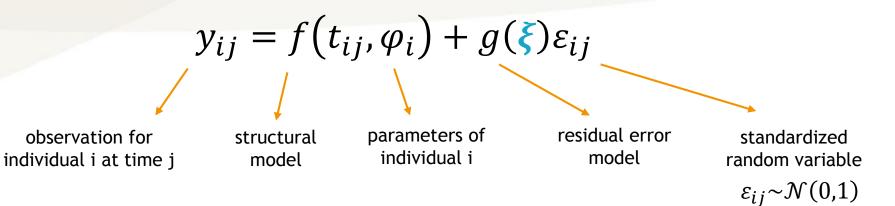
characterize the typical biological phenomena for the population, but also the inter-individual variability

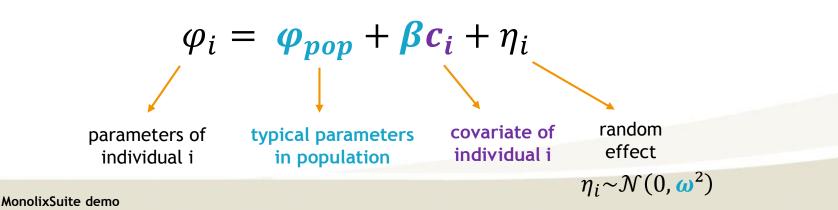


hierarchical model for both the observations and the individual parameters


Population approach in Monolix

Model for the observations:


Model for the individual parameters:


1. Population approach in Monolix ZIXOFT

Model for the observations:

Model for the individual parameters:

Example

$$y_{ij} = \frac{D}{V_i} e^{-k_i t_{ij}} + a\varepsilon_{ij} \quad \text{with} \quad \varepsilon_{ij} \sim \mathcal{N}(0,1)$$

$$\begin{cases} V_i = V_{pop} \left(\frac{WT_i}{70}\right)^{\beta_V} e^{\eta_{V,i}} & \text{with} \quad \eta_{V,i} \sim \mathcal{N}(0,\omega_V^2) \\ k_i = k_{pop} e^{\eta_{k,i}} & \text{with} \quad \eta_{k,i} \sim \mathcal{N}(0,\omega_k^2) \end{cases}$$

Example

$$y_{ij} = \frac{D}{V_i} e^{-k_i t_{ij}} + a\varepsilon_{ij} \quad \text{with} \quad \varepsilon_{ij} \sim \mathcal{N}(0,1)$$

$$\begin{cases} V_i = V_{pop} \left(\frac{WT_i}{70}\right)^{\beta_V} e^{\eta_{V,i}} & \text{with} \quad \eta_{V,i} \sim \mathcal{N}(0,\omega_V^2) \\ k_i = k_{pop} e^{\eta_{k,i}} & \text{with} \quad \eta_{k,i} \sim \mathcal{N}(0,\omega_k^2) \end{cases}$$

$$\begin{cases} V_{i} = V_{pop} \left(\frac{WT_{i}}{70}\right)^{\beta_{V}} e^{\eta_{V,i}} \\ k_{i} = k_{pop} e^{\eta_{k,i}} \end{cases} \begin{cases} \log(V_{i}) = \log(V_{pop}) + \beta_{V} \log\left(\frac{WT_{i}}{70}\right) + \eta_{V,i} \\ \log(k_{i}) = \log(k_{pop}) + \eta_{k,i} \end{cases}$$

- Estimate population parameters θ=(V_{pop}, k_{pop}, ω_V, ω_k, β_V, a) using maximum likelihood
- Estimation of the uncertainty of the population parameters
- Estimate the individual parameters $\phi_i = (k_i, V_i)$ for each individual
 - The most probable one (EBEs)
 - The conditional distribution
- Simulations using the model

Tasks in Monolix

POPULATION PARAMETERS

Goal:

Estimate population parameters with SAEM

Results:

- Population parameters
- Approximate individual parameter (mean of conditional distribution)

Usage:

Graphical report of convergence

Goal:

Estimate individual parameters • (EBEs)

Results:

 Modes of individual conditional distributions (EBEs)

≎

Usage:

Used for individual fits

CONDITIONAL DISTRIBUTION

Goal:

Sample from individual conditional distributions with MCMC

Results:

- Samples drawn from distribution
- Mean and standard deviation •

Usage:

Improves the performance of diagnostic plots

Statistical tests (with plots)

•••	0
STANDARD ERRORS	۶

Goal:

Standard errors for population parameters • with linearization or stochastic approximation

Results:

- Standard errors and relative standard errors
- Correlation matrix of the estimates
- Wald test for covariate parameters

Usage:

Uncertainty of population parameters

LIKELIHOOD

Goal:

Compute log-likelihood with linearization • Generate diagnostic plots • or stochastic approximation

Results:

• -2*LL, AIC, BIC

Usage:

• Compare goodness of fit to other models

PLOTS

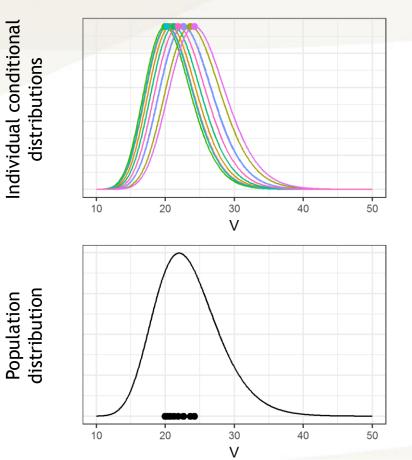
JII

Results:

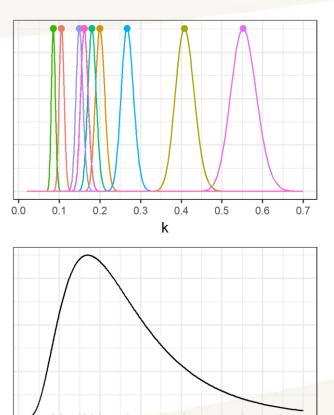
Goal:

- Interactive plots in interface
- Saved images
- Charts data

Usage:


Identification of misspecifications

MonolixSuite demo


Shrinkage

Volume of distribution V V has high shrinkage

Elimination rate k k has very low shrinkage

0.0

0.1

0.2

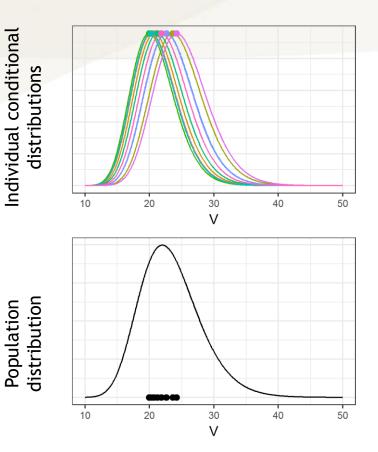
0.3

0.4

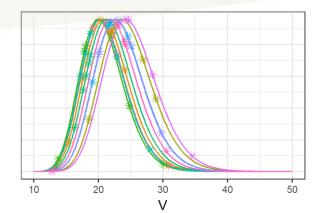
k

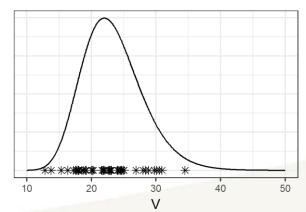
0.5

0.6


0.7

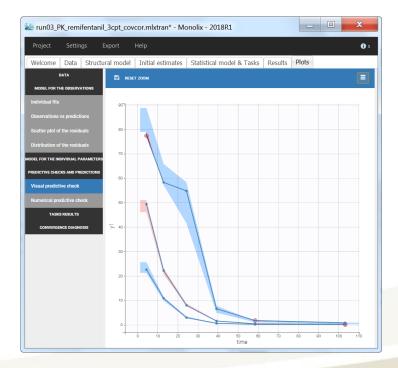
MonolixSuite demo


Circumventing shrinkage



Using the mode of the conditional distribution

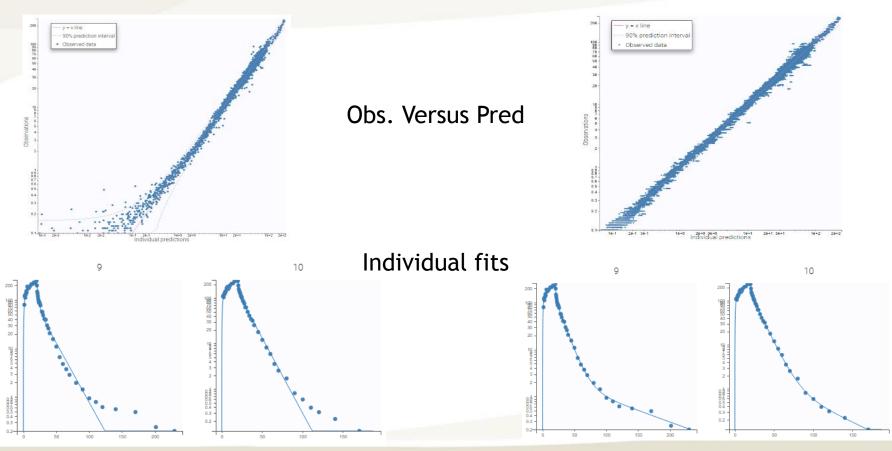
Using several samples from the conditional distribution


$$Cl = Cl_{pop} \left(\frac{AGE}{45}\right)^{\beta_{Cl}} e^{\eta_{Cl}} Power law relationship}$$
$$\longleftrightarrow \log(Cl) = \log(Cl_{pop}) + \beta_{Cl} \times \log\left(\frac{AGE}{45}\right) + \eta_{Cl}$$
$$tAGE = \log\left(\frac{AGE}{45}\right)$$

Monolix: parameter estimation ZLIXOFT

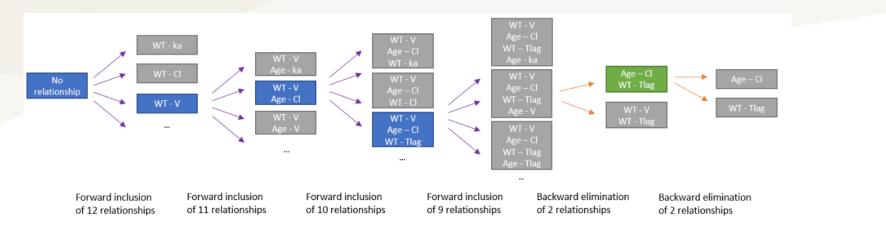
- User-friendly, fast and robust parameter estimation
- Cutting-edge statistical methods (SAEM)
- Efficient model diagnostic using interactive graphics

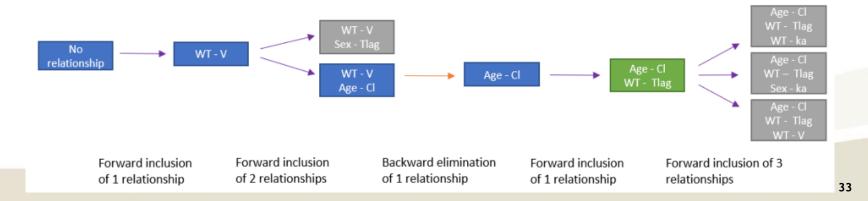
👱 run03_PK_remifentanil_3cpt_covcor.mlxtran* - Monolix - 2018R1								
Project Settings Export Help 👔								
Welcome Data Structural model Initial estimates Statistical model & Tasks Results Plots								
Tasks								
POPULATION PARA	EBEs	Image: Standard errol Image: Standard errol	0 7	PLOTS	<u>ی</u> ۲	0		
		Use linearization method						
Observation model								
FORMULA								
	NAME y1	PREDICTION ERROR MODEL DISTRIBUT CC COMBINED T NORMAL						
to all delivert on end of								
Individual model					Add covariate			
FORMULA			I	CONTINUOUS	DISCRETE MIXTURE	٩		
PARAMETERS DISTRIBUTIONS	RANDOM EFFECTS	- CORRELATION +	AGE	SEX	TINFCAT	IAGE -		
	Select: All None	#1						
CI LOGNORMAL -	\checkmark	✓		\checkmark				
V1 LOGNORMAL -	\checkmark			\checkmark				
Q2 LOGNORMAL -	\checkmark	✓						
V2 LOGNORMAL -	\checkmark	✓						
Q3 LOGNORMAL -	\checkmark							
V3 LOGNORMAL -								
	1							



PK Remifentanil - Monolix

2 compartment model
=> low concentrations are not
well captured


3 compartment model => No misspecification detected


Automatic covariate search

SCM: all covariate-parameter relationships are tested at each step

 COSSAC: only the most promising (given the statistical tests) covariate-parameter relationship is tested at each step

PK-PD modeling approaches ZILIXOFT

	Population PK parameters	Individual PK parameters	PD parameters (population + individual)		
Joint	estimated	estimated	estimated	+	-
Intermediate	fixed (from PK analysis)	estimated	estimated	Accuracy	Computing speed
Sequential	-	fixed (from PK analysis)	estimated	_	Ļ

PK-PD model

Joint approach

PK-PD dataset

PK-PD model

Intermediate approach

PK-PD dataset

PK-PD model

Sequential approach

PK-PD dataset + PK parameters

	ID	TIME	AMT	RATE	DV	YTYPE	MDV	CI	V1	Q2	V2	Q3	V3
	1	0		1.1	18.85	2	0	2.85	8.02	1.29	12.22	0.14	7.09
	1	0	1439.8	71.99			1	2.85	8.02	1.29	12.22	0.14	7.09
	1	0.5		1.1	19.91	2	0	2.85	8.02	1.29	12.22	0.14	7.09
	1	1		1.1	19.51	2	0	2.85	8.02	1.29	12.22	0.14	7.09
	1	1.5		1.1	18.67	2	0	2.85	8.02	1.29	12.22	0.14	7.09
	1	1.5		1.1	9.51	1	1	2.85	8.02	1.29	12.22	0.14	7.09

PK-PD model + regressors Cl = {use = regressor} V1 = {use = regressor} Q2 = {use = regressor} V2 = {use = regressor} Q3 = {use = regressor}

V3 = {use = regressor}

Population	distributio	n nara	meters	Use last estimates: All Fixed effects Fix parameters values : All None
PARAMETERS	POPULATION		STANDARD DEV	VIATIONS SEX
ke0	ke0_pop 1	¢ ¢	omega_ke0 1	: *
EEGO	EEG0_pop 20	÷¢	omega_EEG0 1	: •
Imax	lmax_pop 0.9	÷¢	omega_Imax 1	: •
IC50	IC50_pop 50	÷¢	omega_IC50 1	: •
gam	gam_pop 1	\$ *	omega_gam 1	: •

MonolixSuite demo

PK parameters

PD parameters

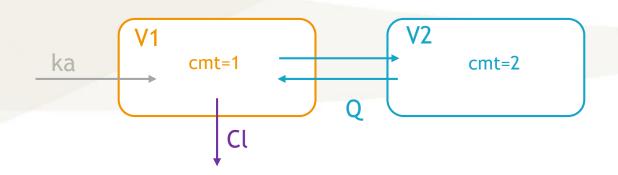
MLXTRAN LANGUAGE

General language rules

Mixtran: human-readable language

- Very natural syntax
- Unified language for all applications
- Support of continuous, categorical, count and time-to-event models (and any combination of them)
- Model definition via macros or equations (ODEs, DDEs)
- Extensive documentation (online or PDF)

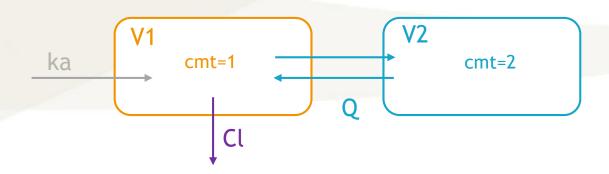
Mlxtran - general structure



[LONGITUDINAL] input={ } (mandatory) input parameters
PK: (optional)	<pre>section to define a model via macros (except the global pkmodel() macro that can be used in EQUATION: too)</pre>
EQUATION: (optional)	<pre>section to define a model via ODEs (and other equations if needed)</pre>
DEFINITION: (optional)	<pre>section to define random variables for non- continuous (time-to-event, count or categorical)</pre>
OUTPUT: output = { }	variable(s) that will be mapped to the data set observations

MonolixSuite demo

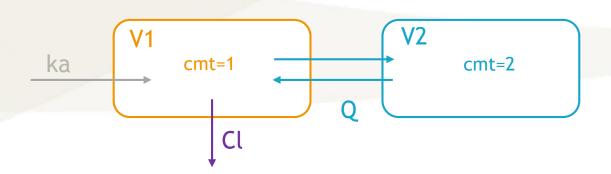
Example model



This model can be used in Monolix via 4 different ways:

- Select the model from the PK library
- Write a model using the pkmodel() macro
- Write a model using a set a unitary macros
- Write a model using a set of ODEs

With the pkmodel() macro




```
[LONGITUDINAL]
input = {ka, V1, Cl, Q, V2}
PK:
Cc = pkmodel(ka, V=V1, k=Cl/V1, k12=Q/V1, k21=Q/V2)
OUTPUT:
output = Cc
```

With a set of macros


```
[LONGITUDINAL]
input = {ka, V1, Cl, Q, V2}
```

PK:

```
compartment(cmt=1, volume=V1, concentration=Cc)
oral(cmt=1, ka)
peripheral(k12=Q/V1,k21=Q/V2)
elimination(cmt=1,Cl)
```

```
OUTPUT:
output = Cc
```

Mlxtran - macros

- peripheral(k12,k21) implicitly defines the second compartment
- for a second peripheral compartment, with compartment number 3: peripheral(k13,k31)
- k12 and k21 are recognized keywords. To use other names or other parameterizations: peripheral(k12=Q/V, k21=Q/V2)
- iv(adm=1,cmt=1): adm refers to the ADM column of the data set, which permits to distinguish several types of administrations
- in case of several outputs, output={Cc,Effect}, the match is done by order with the YTYPE column of the data set

Mlxtran - macros

Administration macros	Elimination macro				
<pre>depot(type/adm=1, target=Ad, Tlag, p=F, Tk0, ← for zero-order absorption ka, Ktr, Mtt) ← for first-order absorption</pre>	elimination(cmt, V, k, Cl, ← for linear elimination Vm, Km) ← for Michaelis-Menten elimination				
Tk0, ← for zero-order absorption ka, Ktr, Mtt) ← for first-order absorption	pkmodel macro				
iv(type/adm, cmt, Tlag, p)	pkmodel(Tlag, p, Tk0, ← zero-order absorption				
Compartment macros	ka, Ktr, Mtt, ← first-order absorption k/Cl, ← linear elimination				
compartment(cmt=1, amount=Ac, concentration=Cc, volume=V)	Vm, Km, (k12, k21), ke0)← MM elimination ← transfer rates ← effect compartment transfer rate				
peripheral(kij, kji, amount=Ap, volume=Vp, concentration=Cp)	Doc for PK macros: http://mlxtran.lixoft.com/pk/				

effect(cmt, ke0, concentration=Ce)

transfer(from=i, to=j, kt)

MonolixSuite demo

+ Mlxtran cheatsheet

44

With a set of ODEs [LONGITUDINAL] input = $\{ka, V1, C1, Q, V2\}$ PK: depot(adm=1, target=Ac) depot(adm=2, target=Ad) **V1** ka cmt=1 **EQUATION:** t 0 = 00 Ac 0 = 0Cl

Ap 0 = 0

k=C1/V1

k12=Q/V1 k21=Q/V2

output = Cc

ddt Ad = -ka*Adddt Ac = -k*Ac - k12*Ac + k21*Ap + ka*Adddt Ap = k12*Ac - k21*Ap Doc for ODEs: Cc = Ac/V1http://mlxtran.lixoft.com/longitudinal/how-do-i-model-an-ode/ + Mlxtran cheatsheet OUTPUT: MonolixSuite demo

V2

cmt=2

Mlxtran syntax for ODEs

- depot macro to link data set and model.
 - Bolus, zero-order and first-order absorptions can be used.
 - Target must be an amount (not a concentration).
 - For first-order absorption, write depot(target=Ac,ka). No need for a depot compartment.
- define initial time and initial values with "_0", for instance "t_0=" or "Ac_0="
- define ODEs with "ddt_" for instance "ddt_Ac="
- ODEs in block EQUATION: (while macros are in block PK:)

SYCOMORE

Workbench for Monolix

Sycomore: workbench

- overview of Monolix runs in table and graphical format
- comparison of runs side by side
- run projects in batch mode

ome Hierarchy															
Li model_count_binomial_noTime18_new D r01.mixtran O r02.mixtran	Compare All None 1	Project name ↓↑	Hierarchy Add all Clean	Actions	Rating 1	-2*LL (Lin) 1	-2*LL (IS)	BIC (Lin) 11	BIC (IS)	Structural model	Observation model	Individual model	Used covariates	Comments	Changes from parent
 ✓ r03.miktran ✓ r04.miktran ✓ r05.miktran 		r01	٥	× 02%0	***		18773.05		18786.64	constant_model.t xt	MMSE: none	P 0		constant proba over time very bad VPC	
 ✓ © r06.mbtran □ r06b.mixtran 		r02	•	* 6 <i>2</i> %b	***		16993.33		17027.32	exponential_mod el.txt	MMSE: none	p0 alpha		expo proba over time very bad VPC	exp model
 ✓ _ r07.miktran ✓ _ r08.miktran ✓ _ r09.miktran 		r03	•	× 0 <i>2</i> %6	***		16996.7		17030.69	linear_model.txt	MMSE: none	p0 alpha		lin proba over time	lin model
r09_2018R2.miktran r10_2018R2.miktran r10_2018R2.miktran r11_2018R2.miktran		r04	0	× 0 <i>21</i> 40	***		16913.53		16947.52	Verhulst_model.tx t	MMSE: none	p0 alpha		verhust proba over time	logistic model
		r05	0	× 0 2 % B	***		16911.88		16973.06	Richard_model.txt	MMSE: none	p0 alpha beta		richard proba over time	richards model
		r06	•	× 0.2%b	***		16913.53		16947.52	Verhulst_model.tx t	MMSE: none	p0 alpha		verhust proba over time	exclude STDY from cov
				rð1 O	6 6 6 6 6 6	0 r02 0 r03 0 r04 0 r05 0 r07	0	P		0 0 0 0	109 111_201882				

Rsmlx R package

Workbench for Monolix

Rsmlx: R speaks Monolix

- covariateSearch: SCM or COSSAC method
- bootmlx: case bootstrap (stratification possible)
- confintmlx: confidence intervals using bootstrap, profile likelihood or the Fisher Information matrix
- The code is open and commented. It can be easily adapted and modified to your needs.
- These functions use functions from the Monolix API (R package called lixoftConnectors)

MlxConnectors: Monolix API

functions that allow to create/modify/run a Monolix project from R

> Example:

```
library(lixoftConnectors)
initializeLixoftConnectors(software = "monolix")
loadProject("r02.mlxtran")
popparam <- getEstimatedPopulationParameters()
if(popparam['a']<1e-6){
   setErrorModel(DV = "proportional")
   setPopulationParameterInformation(b=list(initialValue=0.3, method="MLE"))
   saveProject("r02bis.mlxtran")
   runScenario()
}
getEstimatedPopulationParameters()</pre>
```

```
MonolixSuite demo
```


SIMULX (mlxR package)

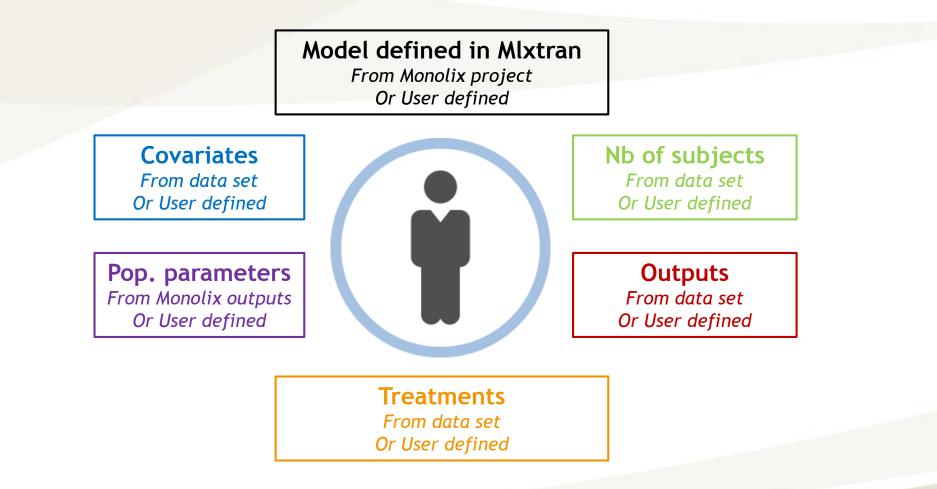
Simulations

Simulx: mlxR package

Simulx: an application for advanced simulations

- A powerful and flexible simulator
- Available via an R library
- Integrated with Monolix
- A tool for decisions

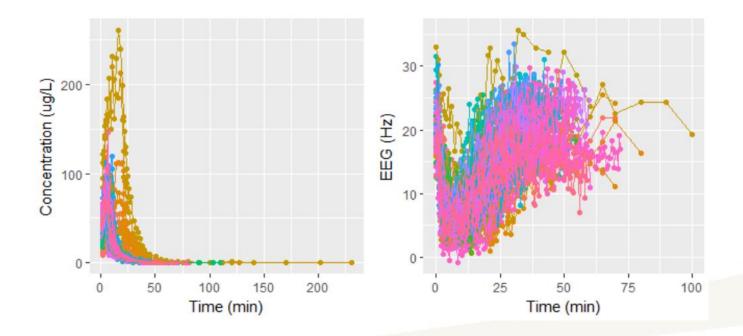
Overview of possibilities



- compare different treatments
- compare the outcome in different populations (which have different covariates, or inclusion/exclusion criteria)
- simulate clinical trials with different number of patients or different designs (crossover, parallel, adaptive designs), do replicates and calculate the power
- reuse covariates from existing data bases (as text files)
- take into account the uncertainty of population parameters
- take into account non-adherence to a treatment
- dose individualization after therapeutic drug monitoring
- generate customized VPCs

VPC: visual predictive check

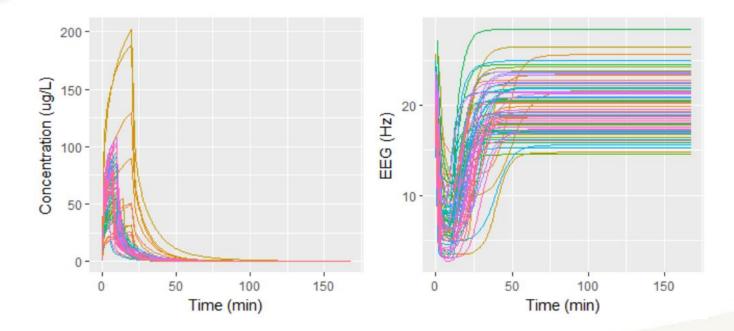
Simulx: flexibility



Simulx: resimulate data set

1. Resimulate a data set:

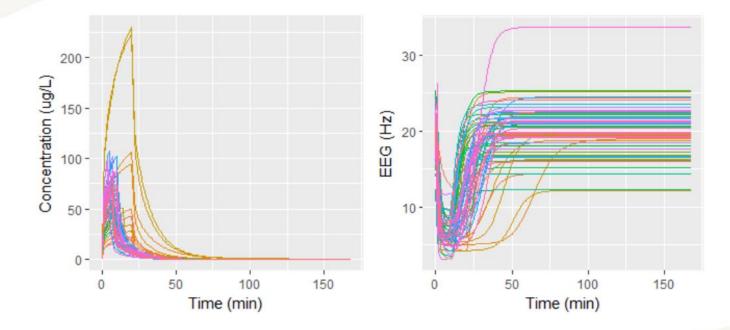
- same covariates, same design (administration and output)
- estimated population parameters
- random individual parameters and residual error



Simulx: resimulate data set

1. Resimulate a data set:

output predictions instead of simulated observations

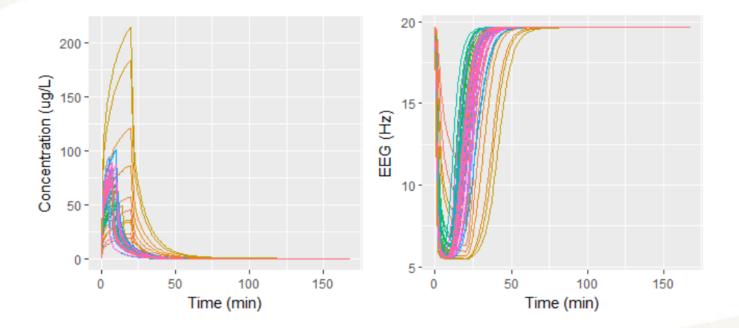


MonolixSuite demo

Simulx: resimulate data set

1. Resimulate a data set:

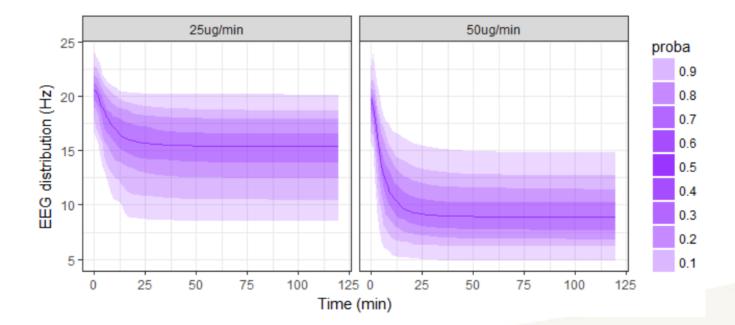
simulating with EBEs



Simulx: resimulate data set

1. Resimulate a data set:

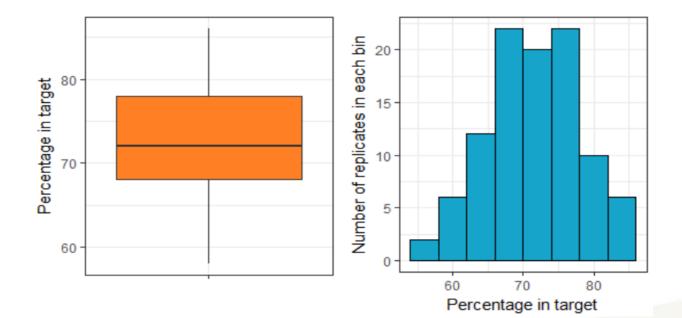
simulating with population parameters



Simulx: new treatment

2. Simulate two different treatments:

- reuse a monolix project
- change the treatment applied to the individuals: 25 or 50 ug/min



Simulx: replicates

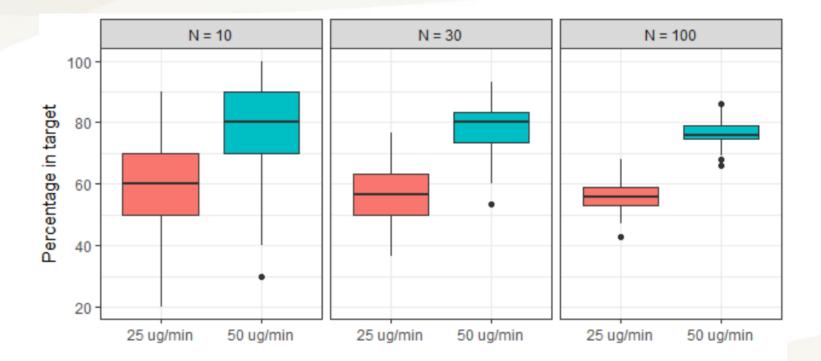
3. Uncertainty of an endpoint:

- Define an endpoint: percentage of individuals with 5 Hz < EEG < 15 Hz
- Do replicates to estimate the uncertainty of the endpoint ('nrep' argument)

Simulx: clinical trials

4. Clinical trial simulations with different numbers of individuals:

- N = 10, 30, and 100 patients
- repeated administrations every 4 weeks with 50 ug/min or 25 ug/min


=> we simulate M=100 replicates of each trial design, i.e. a total of (10+30+100) × 2 ×100 = 48 000 simulations.

=> runs in 4 minutes on a regular laptop

Simulx: clinical trials

4. Clinical trial simulations with different numbers of individuals:

Simulx: clinical trials

4. Clinical trial simulations: power of the study

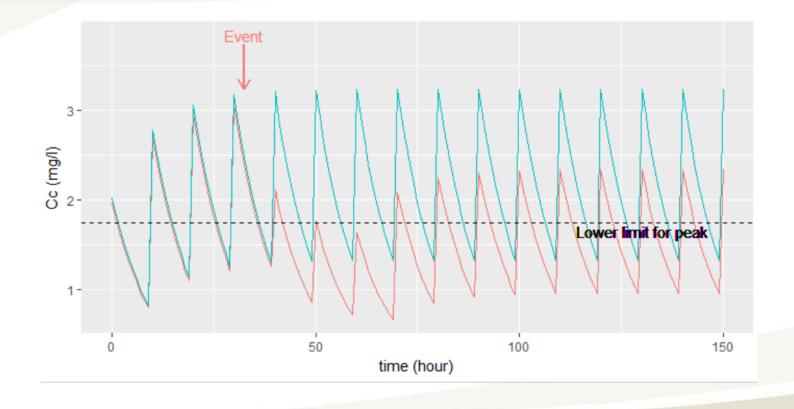
- success of a one clinical trial if proportion in target significantly higher for 50 ug/min compared to 25 ug/min
- count the number of successes to estimate the power of the study

	N = 10	N = 30	N=100
power	0.18	0.55	0.98

Simulx: uncertainty

5. Uncertainty of population parameters

- replace nrep by npop
- use s.e of population parameters to draw population parameters from their uncertainty distribution


id	рор	IC50_pop	IC50
1	1	12.486	16.174447
2	1	12.486	12.708641
3	1	12.486	9.237041
1	2	13.712	13.106824
2	2	13.712	9.198109
3	2	13.712	20.120062

Simulx: dose adaptation

6. Dose adaptation using therapeutic drug monitoring

titration function to define a target and how dose can be changed

SIMULX-GUI

Simulations

MonolixSuite demo

Simulx-GUI

🖉 Untit	led* - Simulx - 2	020R1						
Project	: Settings	Help						
Home	Definition Explor	ration Simulation Result	ts Plots					
Task								
		SIMULATION	ус.	οι	DITCOME & ENDPOINT	0	RUN	
			-					
Sim	ulation							
	 One clinical tria Replicates 	lsimulation			Fix random seed	🗸 Same	individuals among groups	All samplings 🛛 🛪 🕶
	0							
		Shared		Shared ids	Group1 🕜		Group2 🕝	New group
				All None	•			-
	Size	10	•	Ð				
	Parameter 💐-	PopParameters •	II a	Ð				
					trtManual1 -		trtManual2 -	•
	Treatment <			3	ADD AN ADMINISTRATIC	DN	ADD AN ADMINISTRATION	
	+	regularCc -	∎a.	0				
	Outputs 😅	+ ADD AN OUTPUT		Ð				
Outo	come & endpo	oint						
				Outcomes				
				Outcomes	<			

PKanalix

NCA and CA analysis

MonolixSuite demo

PKanalix: NCA & CA analysis

- fast and user-friendly
- out-of-the-box and report-ready plots and tables
- Industry-standard calculations

😉 Untitled* - Pk	Canalix - 2019R1				_ D X	
Project Sett	ings Export Help				0	1
Home Data	Tasks Results Plots					
Chec	k Init. Run					
NCA CA	on compartmental analysis					
		NON COM	PARTMENTAL ANALYSIS			
Se	ettings					
	Calculations	Acceptance criteria		Rules for λ_z estimation		•
	Integral method Linear trapezoidal linear Linear log trapezoidal Linear up log down Linear trapezoidal linear/log	Adjusted R2 % extrapolated AUC Span		Main rule R2 Adjusted R2 Interval Points	_	
	Partial AUC time BLQ method before Tmax Missing Zero LOQ			Maximum number of □ Minimum time for λ_z □ Minimum time for λ_z		

Conclusion

MonolixSuite2019R1: 1 language – 5 applications

- State-of-the-art statistical methods
- Increased productivity and quality
- Ease of use
- Lixoft's export support

Contact us:

- support@lixoft.com
- www.lixoft.com

